Patents Assigned to Mitsui Engineering & Shipbuilding Co., LTD
  • Patent number: 8147687
    Abstract: The present invention provides a ballast water treatment system including a reaction tank in which raw water and ozone are imported and made to react each other for a predetermined period of time to kill microorganisms existing in raw water, an ozone decomposer in which water containing residual ozone discharged from the reaction tank is imported and the residual ozone is decomposed, and a circulation pump installed between the reaction tank and ozone decomposer, forming a circulation system which removes the residual ozone by means of circulating the water containing the residual ozone between the reaction tank and ozone decomposer. Accordingly, this system dispenses with a deaeration tank which would require a wide space for installation, small cost and is able to be applied to existing ships easily.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: April 3, 2012
    Assignee: Mitsui Engineering & Shipbuilding Co., Ltd.
    Inventors: Shuji Ueki, Masahiro Saito, Noboru Takemura, Yukirou Kadomoto, Takeo Nojiri, Izumi Onishi, Masahiro Kuwajima, Masabumi Matsumoto
  • Patent number: 8147076
    Abstract: An object is to provide a solar ray lighting device which is capable of reducing the blocking and the shadowing of beams of light reflected by heliostats and which is capable of fixing firmly and stably a heavy and large-sized center reflector. In a beam-down type solar ray lighting device, at least three supporting blocks are assembled together to form a pyramidal shape. In addition, an outer circumferential edge of the center reflector is fixed to the supporting posts so that the outer circumferential edge of the center reflector can internally touch the supporting posts.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: April 3, 2012
    Assignee: Mitsui Engineering & Shipbuilding Co., Ltd.
    Inventors: Kazuaki Ezawa, Hiroo Inoue, Takashi Kawaguchi, Yuzuru Hamada
  • Patent number: 8147686
    Abstract: The present invention provides a ballast water treatment system including a reaction tank in which raw water and ozone are imported and made to react each other for a predetermined period of time to kill microorganisms existing in raw water, an ozone decomposer in which water containing residual ozone discharged from the reaction tank is imported and the residual ozone is decomposed, and a circulation pump installed between the reaction tank and ozone decomposer, forming a circulation system which removes the residual ozone by means of circulating the water containing the residual ozone between the reaction tank and ozone decomposer. Accordingly, this system dispenses with a deaeration tank which would require a wide space for installation, small cost and is able to be applied to existing ships easily.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: April 3, 2012
    Assignee: Mitsui Engineering & Shipbuilding Co., Ltd
    Inventors: Shuji Ueki, Masahiro Saito, Noboru Takemura, Yukirou Kadomoto, Takeo Nojiri, Izumi Onishi, Masahiro Kuwajima, Masabumi Matsumoto
  • Publication number: 20120071697
    Abstract: A method for producing ethanol by which ethanol can be synthesized from less fermentable biomass materials such as plant-derived materials and rice straws and industrial waste biomass materials such as wooden building materials and pulp and which can therefore broaden the range of raw materials for the production of ethanol. Specifically, a method for producing ethanol including reacting a raw material gas obtained by a thermochemical gasification reaction of biomass in the presence of a catalyst containing rhodium, at least one transition metal, and at least one element selected from lithium, magnesium and zinc.
    Type: Application
    Filed: February 12, 2010
    Publication date: March 22, 2012
    Applicants: MITSUI ENGINEERING & SHIPBUILDING CO., LTD. ET AL., ICHIKAWA OFFICE INC.
    Inventor: Masaru Ichikawa
  • Patent number: 8138382
    Abstract: The composition of raw mixed gas and the gas composition of produced mixed gas hydrate are uniformed as rapidly as possible. The process for producing a mixed gas hydrate comprises the gas hydrate forming step of reacting a mixed gas (g) with water (w) to thereby obtain a gas hydrate in slurry form; the dewatering step of removing the water (w) from the gas hydrate slurry (s); the palletizing step of forming the gas hydrate after water removal into pellets; the freezing step of chilling the gas hydrate pellets (p) to the freezing point or below to thereby freeze the same; and the pressure reduction step of depressurizing the frozen gas hydrate to storage pressure, wherein the mixed gas (g) fed to the gas hydrate forming step is diluted by diluent gas (m) as a constituent of the principal components of the mixed gas (g).
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: March 20, 2012
    Assignee: Mitsui Engineering & Shipbuilding Co., Ltd.
    Inventors: Nobuyasu Kanda, Masahiro Takahashi, Toru Iwasaki
  • Patent number: 8127931
    Abstract: Unburned carbon is efficiently separated according to the properties of fly ash. An apparatus is provided which comprises: a slurry preparation tank (10) in which water (c) is added to fly ash (a) to produce a slurry (d); a scavenger addition device (20) for adding a scavenger (e) to the slurry (d); a vertical surface-modification device (30) in which the slurry after addition of the scavenger is stirred at a high speed to impart shear force thereto and thereby cause the scavenger (e) to adhere to the surface of unburned carbon (b) contained in the slurry; a regulating tank (60) in which a blowing agent (f) is added to the slurry (d?) which has undergone surface modification with the surface modification device; and a flotation machine (70) with which the unburned carbon (b) is floated together with bubbles (n) and separated from the slurry containing the blowing agent.
    Type: Grant
    Filed: December 26, 2006
    Date of Patent: March 6, 2012
    Assignee: Mitsui Engineering & Shipbuilding Co., Ltd.
    Inventors: Kazuyoshi Matsuo, Kazuo Abe, Hitoshi Koyama, Toshio Yamaki
  • Patent number: 8123958
    Abstract: A method for treating ship ballast water in which aquatic organisms in the ship ballast water are exterminated by adding hydrogen peroxide or a compound producing hydrogen peroxide in an amount such that a hydrogen peroxide concentration comes to be 10 to 500 mg/L to the ship ballast water, and then providing physical means for causing shear strength and/or cavitation to the ship ballast water.
    Type: Grant
    Filed: February 17, 2006
    Date of Patent: February 28, 2012
    Assignees: Katayama Chemical, Inc., The Japan Association of Marine Safety, Marine Technology Institute Co., Ltd., Laboratory of Aquatic Science Consultant Corporation, M.O. Marine Consulting, Ltd., Mitsui Engineering & Shipbuilding Co., Ltd., Shinko Ind. Ltd.
    Inventors: Yasuo Fukuyo, Yoshiharu Wakao, Takuro Tabuchi, Takashi Mizumori, Takeaki Kikuchi
  • Patent number: 8119285
    Abstract: A positive electrode material is disclosed which contains an iron lithium phosphate as a positive electrode active material and has a large charge/discharge capacity, high-rate adaptability, and good charge/discharge cycle characteristics at the same time. Also disclosed are a simple method for producing such a positive electrode material and a high-performance secondary battery employing such a positive electrode material. Specifically, disclosed is a positive electrode material for secondary battery characterized by mainly containing a positive electrode active material represented by the general formula: LinFePO4 (wherein n is a number of 0-1) and further containing at least one different metal element selected from the group consisting of vanadium (V), chromium (Cr), copper (Cu), zinc (Zn), indium (In) and tin (Sn). This positive electrode material can be produced using a halide of such a metal element as the raw material.
    Type: Grant
    Filed: October 26, 2004
    Date of Patent: February 21, 2012
    Assignee: Mitsui Engineering & Shipbuilding Co., Ltd.
    Inventors: Naoki Hatta, Toshikazu Inaba, Izumi Uchiyama
  • Publication number: 20120029831
    Abstract: A fluorescence detecting device receives fluorescence emitted by n kinds of measurement objects within wavelength bands FLk (k is an integer of 1 to n) set so that the fluorescence intensity of fluorescence emitted by a measurement object k becomes higher than that of fluorescence emitted by the other one or more measurement objects, and acquires fluorescent signals corresponding to the wavelength bands FLk (k is an integer of 1 to n). Each of the fluorescent signals is subjected to frequency-down conversion by mixing it with a modulation signal for modulating the intensity of a laser beam Lk (k=1) corresponding to at least one of the wavelength bands FLk to produce fluorescence data including the phase delay and intensity amplitude of the fluorescent signal. The fluorescence data is corrected to calculate the phase delay and a fluorescence relaxation time is calculated using the phase delay.
    Type: Application
    Filed: January 15, 2010
    Publication date: February 2, 2012
    Applicant: MITSUI ENGINEERING & SHIPBUILDING CO., LTD
    Inventors: Kazuteru Hoshishima, Shigeyuki Nakada
  • Publication number: 20120025098
    Abstract: When receiving fluorescence emitted by a measurement object irradiated with laser light emitted from a laser light source unit, a fluorescence detection device generates a modulation signal for modulating the intensity of the laser light and modulates the laser light using the modulation signal. The fluorescence detection device obtains a fluorescent signal of the fluorescence emitted by the measurement object irradiated with the laser light, and calculates, from the fluorescent signal, a fluorescence intensity and the phase delay of the fluorescence with respect to the modulation signal. At the time, the fluorescence detection device controls the operation amounts of the signal level of a DC component of the modulation signal and the gain of amplification just after the output of the fluorescent signal so that the value of a fluorescence intensity signal falls within a preset range.
    Type: Application
    Filed: February 8, 2010
    Publication date: February 2, 2012
    Applicant: MITSUI ENGINEERING & SHIPBUILDING CO., LTD.
    Inventors: Shigeyuki Nakada, Kyouji Doi
  • Patent number: 8096798
    Abstract: A molding machine for production of gas hydrate pellets under a high pressure in gas hydrate forming conditions, which is inexpensive through minimizing of the use of expensive mechanical seal. The molding machine comprises two forming rolls each fitted to a rotary shaft whose both ends are supported by bearings; a drive unit for rotating the forming rolls; a screw transfer unit for supplying powder to the forming rolls; and a high-pressure vessel, wherein the bearings, the rotary shaft and the forming rolls are all disposed in the high-pressure vessel.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: January 17, 2012
    Assignees: Mitsui Engineering & Shipbuilding Co., Ltd., The Chugoku Electric Power Co., Inc.
    Inventors: Kenji Watanabe, Kiyoaki Suganoya, Takahiro Yoshida, Kenji Ogawa, Shigeru Nanbara, Shinji Imai
  • Patent number: 8098016
    Abstract: An impedance matching device is provided with a basic element having variable characteristic parameters for impedance matching, and an auxiliary element having variable characteristic parameters. At the time of generating plasma by using the impedance matching device, the characteristic parameters of the basic element of each antenna element are fixed, respectively, and the characteristic parameters of the auxiliary element are adjusted for each antenna element. Thus, in an adjusted status where impedance matching for each antenna element is adjusted, each antenna element of an antenna array is fed with a high frequency signal, an electromagnetic wave is radiated from the antenna element, the characteristic parameters of the basic element of each antenna element are synchronized and adjusted, and the impedances of the whole antenna array are matched.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: January 17, 2012
    Assignee: Mitsui Engineering & Shipbuilding Co., Ltd.
    Inventor: Yasunari Mori
  • Publication number: 20110309266
    Abstract: Disclosed herein is a fluorescence detection method. The fluorescence detection method includes the steps of: irradiating a measurement object with laser light modulated at a predetermined frequency; receiving fluorescence emitted by the measurement object and outputting two or more pulsed fluorescent signals; setting reference timing in units of period corresponding to the frequency; acquiring a generation time to output of each of the pulsed fluorescent signals based on the reference timing; generating a cumulative fluorescent signal indicating the relationship between a generation frequency of the pulsed fluorescent signal and the generation time; determining, by using a signal corresponding to modulation of the laser light as a reference signal, a phase difference between the reference signal and the cumulative fluorescent signal; and determining, by using the phase difference, a fluorescence relaxation time of the fluorescence emitted by the measurement object.
    Type: Application
    Filed: February 4, 2010
    Publication date: December 22, 2011
    Applicant: MITSUI ENGINEERING & SHIPBUILDING CO., LTD
    Inventor: Hironori Hayashi
  • Publication number: 20110313725
    Abstract: Disclosed herein is a fluorescence detecting device intended to improve the measurement accuracy of a fluorescence relaxation time.
    Type: Application
    Filed: January 25, 2010
    Publication date: December 22, 2011
    Applicant: MITSUI ENGINEERING & SHIPBUILDING CO., LTD
    Inventor: Hironori Hayashi
  • Publication number: 20110303147
    Abstract: An atomic layer deposition apparatus for forming a thin film on a substrate, including a first container that defines a first inner space, a second container provided inside the first container to define a second inner space, the second container being canister-shaped and including a first opening at one end thereof, a source gas that forms the thin film on the substrate flowing to the second inner space through the first opening, and a pressing member including a gas supply port for supplying the source gas to the second inner space through the first opening, the pressing member being configured to press the second container in a longitudinal direction of the second container so that the second inner space be separated from the first inner space.
    Type: Application
    Filed: February 15, 2010
    Publication date: December 15, 2011
    Applicant: MITSUI ENGINEERING & SHIPBUILDING CO., LTD.
    Inventors: Hiroyuki Tachibana, Kazutoshi Murata, Naomasa Miyatake, Yasunari Mori
  • Publication number: 20110305836
    Abstract: An atomic layer deposition apparatus, which forms a thin film on a substrate, includes a first container that defines a first inner space and includes a substrate carrying-in and carrying-out port and a gas introduction port in different positions, the substrate being carried in and out through the substrate carrying-in and carrying-out port, gas being introduced through the gas introduction port to form the thin film on the substrate, a second container that is provided in the first container to define a second inner space separated from the first inner space, the second container including a first opening, a first moving mechanism that moves the second container in a predetermined direction, and a controller that controls the first moving mechanism such that the second container is moved to a first position where the substrate carrying-in and carrying-out port and the first opening are located opposite each other when the substrate is carried in and out, the controller controlling the first moving mechanism
    Type: Application
    Filed: March 3, 2010
    Publication date: December 15, 2011
    Applicant: MITSUI ENGINEERING & SHIPBUILDING CO., LTD.
    Inventors: Kazutoshi Murata, Yasunari Mori
  • Publication number: 20110293853
    Abstract: A thin film forming apparatus controls pressures of a first internal space in a deposition vessel and a second internal space provided in the first internal space according to determined pressure conditions, respectively. The apparatus causes a source gas to flow onto a substrate in the second internal space and supplies a high-frequency power to a plasma source provided in the first internal space according to the pressure conditions, thereby generating plasma in the second internal space to form a thin film on the substrate.
    Type: Application
    Filed: January 28, 2010
    Publication date: December 1, 2011
    Applicant: MITSUI ENGINEERING & SHIPBUILDING CO., LTD
    Inventors: Kazuki Takizawa, Yasunari Mori, Kazutoshi Murata
  • Publication number: 20110293854
    Abstract: An atomic layer growing apparatus introduces an organic metal gas containing hydrogen to a deposition vessel to cause an organic metal component to be adsorbed on a substrate. Then, the apparatus introduces an oxidizing gas or a nitriding gas to the deposition vessel to generate plasma, thereby oxidizing or nitriding the organic metal component deposited on the substrate. When the plasma is generated, the apparatus detects emission intensity of a predetermined wavelength of light emitted on the substrate through an observation window provided in the deposition vessel. When the detected emission intensity becomes a predetermined value or less, the apparatus stops the generation of the plasma.
    Type: Application
    Filed: January 28, 2010
    Publication date: December 1, 2011
    Applicant: MITSUI ENGINEERING & SHIPBUILDING CO., LTD
    Inventor: Kazuki Takizawa
  • Publication number: 20110284770
    Abstract: A fluorescence detecting device generates a modulation signal for modulating an intensity of laser light and modulates the laser light by using the modulation signal, when receiving fluorescence emitted by a measurement object irradiated with laser light emitted from a laser light source unit. The fluorescence detecting device obtains a fluorescent signal of the fluorescence emitted by the measurement object irradiated with the laser light and calculates, from the fluorescent signal, the phase delay of the fluorescence with respect to the modulation signal. At the time, the fluorescence detecting device controls the frequency of the modulation signal so that the value of the phase delay comes close to a preset value. The fluorescence detecting device calculates the fluorescence relaxation time of the fluorescence emitted by the measurement object by using a phase delay obtained under the condition of frequency of the modulation signal at the time when the control is settled.
    Type: Application
    Filed: February 8, 2010
    Publication date: November 24, 2011
    Applicant: MITSUI ENGINEERING & SHIPBUILDING CO., LTD
    Inventors: Shigeyuki Nakada, Kyouji Doi
  • Publication number: 20110278471
    Abstract: In order to remove autofluorescence emitted by a measurement object, fluorescence of the measurement object within a first wavelength band is first received. The first wavelength band is set so that the intensity of fluorescence emitted by the measurement object irradiated with intensity-modulated laser light is higher than that of autofluorescence emitted by the measurement object irradiated with the laser light. Then, the autofluorescence within a second wavelength band different from the first wavelength band is received. A generated fluorescent signal of the first fluorescence and a generated fluorescent signal of the autofluorescence are mixed with a modulation signal for modulating the laser light to produce first fluorescence data and autofluorescence data, respectively. The autofluorescence data is multiplied by a predetermined constant, and the thus obtained result is subtracted from the first fluorescence data to produce third fluorescence data.
    Type: Application
    Filed: January 15, 2010
    Publication date: November 17, 2011
    Applicant: MITSUI ENGINEERING & SHIPBUILDING CO., LTD
    Inventor: Kazuteru Hoshishima