Patents Assigned to Narad Networks, Inc.
  • Publication number: 20020124111
    Abstract: Hybrid fiber/coax networks employ the existing cable plant used for cable TV and transmit data signals in a frequency bandwidth above that which is used for cable TV. As this cable plant was deployed in a tree and branch topology, data transmissions may be susceptible to noise, variable transmission loss and frequency dispersion, particularly in the upstream direction. Further, due to the tree and branch topology, homes at the far end of the network experience much greater loss than do the homes that are near to the headend/ONU. The present system, which uses point-to-point data links between intelligent network elements located in the feeder/distribution network to provide reliable, secure, bi-directional broadband access. Digital signals, or messages, are terminated at the intelligent network elements, switched and regenerated for transmission across additional upstream or downstream data links as needed to connect a home to a headend or router.
    Type: Application
    Filed: September 13, 2001
    Publication date: September 5, 2002
    Applicant: Narad Networks, Inc.
    Inventors: Gautam Desai, Kiran M. Rege, Manas Tandon
  • Publication number: 20020105965
    Abstract: Hybrid fiber/coax networks employ the existing cable plant used for cable TV and transmit data signals in a frequency bandwidth above that which is used for cable TV. As this cable plant was deployed in a tree and branch topology, data transmissions may be susceptible to noise, variable transmission loss and frequency dispersion, particularly in the upstream direction. Further, due to the tree and branch topology, homes at the far end of the network experience much greater loss than do the homes that are near to the headend/ONU. The present system uses point-to-point data links between intelligent network elements located in the feeder/distribution network to provide reliable, secure, bi-directional broadband access. Digital signals are terminated at the intelligent network elements, switched and regenerated for transmission across additional upstream or downstream data links as needed to connect a home to a headend or router.
    Type: Application
    Filed: September 13, 2001
    Publication date: August 8, 2002
    Applicant: Narad Networks, Inc.
    Inventors: Subrahmanyam Dravida, Dev V. Gupta, Sriram Narayan, Frederick Peralta, Kiran Rege, Manas Tandon
  • Publication number: 20020101820
    Abstract: Hybrid fiber/coax networks employ the existing cable plant used for cable TV and transmit data signals in a frequency bandwidth above that which is used for cable TV. As this cable plant was deployed in a tree and branch topology, data transmissions may be susceptible to noise, variable transmission loss and frequency dispersion, particularly in the upstream direction. Further, due to the tree and branch topology, homes at the far end of the network experience much greater loss than do the homes that are near to the headend/ONU. The present system, which uses point-to-point data links between intelligent network elements located in the feeder/distribution network to provide reliable, secure, bi-directional broadband access. Digital signals are terminated at the intelligent network elements, switched and regenerated for transmission across additional upstream or downstream data links as needed to connect a home to a headend or router.
    Type: Application
    Filed: September 13, 2001
    Publication date: August 1, 2002
    Applicant: Narad Networks, Inc.
    Inventors: Satya V. Gupta, Sanjiv Nanda, Kiran Rege, Nitin Sonawane, Manas Tandon
  • Publication number: 20020097674
    Abstract: Hybrid fiber/coax networks employ the existing cable plant used for cable TV and transmit data signals in a frequency bandwidth above that which is used for cable TV. As this cable plant was deployed in a tree and branch topology, data transmissions may be susceptible to noise, variable transmission loss and frequency dispersion, particularly in the upstream direction. Further, due to the tree and branch topology, homes at the far end of the network experience much greater loss than do the homes that are near to the headend/ONU. The present system, which uses point-to-point data links between intelligent network elements located in the feeder/distribution network to provide reliable, secure, bi-directional broadband access. Connections are established by a call admission control (CAC) server which determines utilization, computes required bandwidth and selectively allows additional connections based on available bandwidth.
    Type: Application
    Filed: September 13, 2001
    Publication date: July 25, 2002
    Applicant: Narad Networks, Inc.
    Inventors: Srinivas Balabhadrapatruni, Gautam Desai, Prasad Dorbala, Ravi S. Kumar, Srinivas Loke, Sanjiv Nanda, Kiran M. Rege, Prashant Saxena, Manas Tandon
  • Publication number: 20020085552
    Abstract: Hybrid fiber/coax networks employ the existing cable plant used for cable TV and transmit data signals in a frequency bandwidth above that which is used for cable TV. As this cable plant was deployed in a tree and branch topology, data transmissions may be susceptible to noise, variable transmission loss and frequency dispersion, particularly in the upstream direction. Further, due to the tree and branch topology, homes at the far end of the network experience much greater loss than do the homes that are near to the headend/ONU. The present system, which uses point-to-point data links between intelligent network elements located in the feeder/distribution network to provide reliable, secure, bi-directional broadband access. Digital signals are terminated at the intelligent network elements, switched and regenerated for transmission across additional upstream or downstream data links as needed to connect a home to a headend or router.
    Type: Application
    Filed: September 13, 2001
    Publication date: July 4, 2002
    Applicant: Narad Networks, Inc., Westford Massachusetts
    Inventor: Manas Tandon
  • Publication number: 20020085589
    Abstract: Hybrid fiber/coax networks employ the existing cable plant used for cable TV and transmit data signals in a frequency bandwidth above that which is used for cable TV. As this cable plant was deployed in a tree and branch topology, data transmissions may be susceptible to noise, variable transmission loss and frequency dispersion, particularly in the upstream direction. Further, due to the tree and branch topology, homes at the far end of the network experience much greater loss than do the homes that are near to the headend/ONU. The present system, which uses point-to-point data links between intelligent network elements located in the feeder/distribution network to provide reliable, secure, bi-directional broadband access. Digital signals are terminated at the intelligent network elements, switched and regenerated for transmission across additional upstream or downstream data links as needed to connect a home to a headend or router.
    Type: Application
    Filed: September 13, 2001
    Publication date: July 4, 2002
    Applicant: Narad Networks, Inc.
    Inventors: Subrahmanyam Dravida, David Kravitz, Sanjiv Nanda, Sriram Narayan, Pinar Ormeci, Kiran M. Rege, Vyomesh Shah, Jerome D. Strombosky, Daniel Talbot, Manas Tandon, Wei Ye, Xiangdong Zhang, Dev V. Gupta
  • Publication number: 20020075814
    Abstract: Hybrid fiber/coax networks employ the existing cable plant used for cable TV and transmit data signals in a frequency bandwidth above that which is used for cable TV. As this cable plant was deployed in a tree and branch topology, data transmissions may be susceptible to noise, variable transmission loss and frequency dispersion, particularly in the upstream direction. Further, due to the tree and branch topology, homes at the far end of the network experience much greater loss than do the homes that are near to the headend/ONU. The present system, which uses point-to-point data links between intelligent network elements located in the feeder/distribution network to provide reliable, secure, bi-directional broadband access. Digital signals are terminated at the intelligent network elements, switched and regenerated for transmission across additional upstream or downstream data links as needed to connect a home to a headend or router.
    Type: Application
    Filed: September 13, 2001
    Publication date: June 20, 2002
    Applicant: Narad Networks, Inc.
    Inventors: Gautam Desai, Prasad Dorbala, Subrahmanyam Dravida, Dev V. Gupta, Anoop Jayadevan, Kiran Rege, Manas Tandon, Sitaram Dikshitulu
  • Publication number: 20020075875
    Abstract: Hybrid fiber/coax networks employ the existing cable plant used for cable TV and transmit data signals in a frequency bandwidth above that which is used for cable TV. As this cable plant was deployed in a tree and branch topology, data transmissions may be susceptible to noise, variable transmission loss and frequency dispersion, particularly in the upstream direction. Further, due to the tree and branch topology, homes at the far end of the network experience much greater loss than do the homes that are near to the headend/ONU. The present system, which uses point-to-point data links between intelligent network elements located in the feeder/distribution network to provide reliable, secure, bi-directional broadband access. Digital signals are terminated at the intelligent network elements, switched and regenerated for transmission across additional upstream or downstream data links as needed to connect a home to a headend or router.
    Type: Application
    Filed: September 13, 2001
    Publication date: June 20, 2002
    Applicant: Narad Networks, Inc.
    Inventors: Subrahmanyam Dravida, Sriram Narayan, Frederick Peralta, Kiran Rege, Vyomesh Shah, Manas Tandon
  • Publication number: 20020078464
    Abstract: Hybrid fiber/coax networks employ the existing cable plant used for cable TV and transmit data signals in a frequency bandwidth above that which is used for cable TV. As this cable plant was deployed in a tree and branch topology, data transmissions may be susceptible to noise, variable transmission loss and frequency dispersion, particularly in the upstream direction. Further, due to the tree and branch topology, homes at the far end of the network experience much greater loss than do the homes that are near to the headend/ONU. The present system, which uses point-to-point data links between intelligent network elements located in the feeder/distribution network to provide reliable, secure, bi-directional broadband access. Digital signals are terminated at the intelligent network elements, switched and regenerated for transmission across additional upstream or downstream data links as needed to connect a home to a headend or router.
    Type: Application
    Filed: September 13, 2001
    Publication date: June 20, 2002
    Applicant: Narad Networks, Inc.
    Inventors: Sybrahmanyam Dravida, Prasad Dorbala, Dev V. Gupta, Satya V. Gupta
  • Publication number: 20020075805
    Abstract: Hybrid fiber/coax networks employ the existing cable plant used for cable TV and transmit data signals in a frequency bandwidth above that which is used for cable TV. As this cable plant was deployed in a tree and branch topology, data transmissions may be susceptible to noise, variable transmission loss and frequency dispersion, particularly in the upstream direction. Further, due to the tree and branch topology, homes at the far end of the network experience much greater loss than do the homes that are near to the headend/ONU. The present system, which uses point-to-point data links between intelligent network elements located in the feeder/distribution network to provide reliable, secure, bi-directional broadband access. Digital signals are terminated at the intelligent network elements, switched and regenerated for transmission across additional upstream or downstream data links as needed to connect a home to a headend or router.
    Type: Application
    Filed: September 13, 2001
    Publication date: June 20, 2002
    Applicant: Narad Networks, Inc.
    Inventors: Dev V. Gupta, Satya V. Gupta, Sriram Narayan, Frederick Peralta, Kiran Rege, Manas Tandon, Subrahmanyam Dravida