Patents Assigned to NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
  • Publication number: 20140083907
    Abstract: The regenerated hydrocracking catalyst according to the present invention is a regenerated hydrocracking catalyst prepared by regenerating a used hydrocracking catalyst including: a catalyst support containing zeolite and an amorphous composite metal oxide having solid acidity; and at least one active metal supported by the catalyst support, selected from noble metals of Group 8 to Group 10 in the periodic table, wherein the regenerated hydrocracking catalyst contains 0.05 to 1% by mass of a carbonaceous substance in terms of carbon atoms based on the entire mass of the catalyst.
    Type: Application
    Filed: March 26, 2012
    Publication date: March 27, 2014
    Applicants: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Yuichi Tanaka, Takuya Niitsuma, Kazuhiko Tasaka, Marie Iwama
  • Publication number: 20140088204
    Abstract: The present invention provides a process for producing a hydrocarbon oil by performing a Fischer-Tropsch synthesis reaction using a reactor for a Fischer-Tropsch synthesis including a reaction apparatus having a slurry containing catalyst particles and a gaseous phase located above the slurry to obtain a hydrocarbon oil, wherein the Fischer-Tropsch reaction is performed while controlling a temperature of the slurry so that a difference T2?T1 between the average temperature T1 of the slurry and a temperature T2 at the liquid level of the slurry in contact with the gaseous phase is 5 to 30° C.
    Type: Application
    Filed: March 26, 2012
    Publication date: March 27, 2014
    Applicants: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., JX NIPPON OIL & ENERGY CORPORATION
    Inventor: Yuichi Tanaka
  • Publication number: 20140080926
    Abstract: A method for estimating a particulate content in a slurry of the present invention is a method for estimating a content of particulates having a predetermined particle size or less in a slurry with solid particles dispersed in hydrocarbons including a wax, the method including, based on a correlation between a visible light transmittance and a content of solid particles having the predetermined particle size or less at a temperature at which hydrocarbons including a wax are liquefied when the solid particles having the predetermined particle size or less are dispersed in the hydrocarbons, estimating a content of particulates having the predetermined particle size or less in the slurry from a visible light transmittance of a supernatant part when the slurry is left to stand at the temperature.
    Type: Application
    Filed: March 26, 2012
    Publication date: March 20, 2014
    Applicants: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., JX NIPPON OIL & ENERGY CORPORATION
    Inventor: Kazuaki Hayasaka
  • Publication number: 20140076782
    Abstract: The regenerated hydrotreating catalyst of the present invention is a regenerated hydrotreating catalyst prepared by regenerating a used hydrotreating catalyst comprising a catalyst support including an amorphous composite metal oxide having solid acidity, and at least one active metal supported by the catalyst support and selected from noble metals of Group 8 to Group 10 in the periodic table, wherein the regenerated hydrotreating catalyst contains 0.05 to 1% by mass of a carbonaceous substance in terms of a carbon atom based on the entire mass of the catalyst.
    Type: Application
    Filed: March 26, 2012
    Publication date: March 20, 2014
    Applicants: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Yuichi Tanaka, Takuya Niitsuma, Kazuhiko Tasaka, Marie Iwama
  • Publication number: 20140021094
    Abstract: Heavy hydrocarbons contained in FT off gas of a GTL process are removed by bringing the FT off gas into contact with absorption oil, by introducing the FT off gas into a distillation tower, by cooling the FT off gas or by driving the FT off gas into an adsorbent. A burner tip for heating a reformer tube, using FT off gas as fuel, is prevented from being plugged by the deposition of heavy hydrocarbons contained in the FT off gas.
    Type: Application
    Filed: March 31, 2011
    Publication date: January 23, 2014
    Applicants: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, CHIYODA CORPORATION, COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., JAPAN PETROLEUM EXPLORATION CO., LTD.
    Inventors: Kenichi Kawazuishi, Fuyuki Yagi, Shuhei Wakamatsu, Tomoyuki Mikuriya
  • Publication number: 20140021095
    Abstract: The present invention provides a method for producing a hydrocarbon oil, including performing a hydrocracking by continuously feeding, to a hydrocracking reactor containing a hydrocracking catalyst, a wax to be processed including: a raw wax containing 70% by mass or more of straight-chain hydrocarbons with a boiling point of higher than 360° C.; and an uncracked wax containing 70% by mass or more of straight-chain hydrocarbons with a boiling point of higher than 360° C., which uncracked wax is separated from a hydrocracking product discharged from the reactor, to thereby yield a hydrocarbon oil including hydrocarbons with a boiling point of 360° C. or lower.
    Type: Application
    Filed: January 31, 2012
    Publication date: January 23, 2014
    Applicants: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Marie Iwama, Kazuhiko Tasaka, Yuichi Tanaka
  • Publication number: 20140018454
    Abstract: A Fischer-Tropsch synthesis reaction catalyst includes a catalyst support containing a silica and zirconium oxide in an amount of 0.5 to 14% by mass based on the mass of the catalyst support, and cobalt metal and a cobalt oxide supported on the catalyst support in an amount equivalent to 10 to 40% by mass of tricobalt tetroxide based on the mass of the catalyst, wherein the degree of reduction of the cobalt atoms is within a range from 75 to 93%, and the amount of hydrogen gas adsorption per unit mass of the catalyst at 100° C. is within a range from 0.40 to 1.0 ml/g.
    Type: Application
    Filed: March 14, 2012
    Publication date: January 16, 2014
    Applicants: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Yoshiyuki Nagayasu, Hideki Ono, Kazuaki Hayasaka, Mayumi Yokoi
  • Publication number: 20140014089
    Abstract: The temperature control system is provided with a lower heat removing unit which is disposed at the bottom of a reactor inside which an exothermic reaction takes place and through which a liquid coolant is flowed, and an upper heat removing unit which is disposed in the reactor further above from the lower heat removing unit and through which the liquid coolant is flowed, recovering reaction heat inside the reactor and controlling a temperature inside the reactor. The lower heat removing unit is supplied with the liquid coolant which is adjusted for temperature by a first temperature adjustment unit, and the upper heat removing unit is supplied with the liquid coolant which is adjusted for temperature by a second temperature adjustment unit different from the first temperature adjustment unit.
    Type: Application
    Filed: March 15, 2012
    Publication date: January 16, 2014
    Applicants: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., JX NIPPON OIL & ENERGY CORPORATION
    Inventor: Shinya Arai
  • Publication number: 20140018449
    Abstract: A method for producing hydrocarbons includes: a synthesis step of synthesizing hydrocarbons by the Fischer-Tropsch synthesis reaction using a slurry bubble column reactor having a slurry containing catalyst particles and liquid hydrocarbons retained inside the reactor, and having a gas phase portion located above the slurry; a discharging step of passing the slurry through a filter positioned inside and/or outside the reactor, thereby separating and discharging the heavy liquid hydrocarbons; a backwash step of flushing liquid hydrocarbons through the filter in the opposite direction to the flow of the slurry, thereby returning the catalyst particles to the reactor; and a cooling and gas-liquid separation step of cooling the hydrocarbons discharged from the gas phase portion, and then separating and collecting the condensed light liquid hydrocarbons.
    Type: Application
    Filed: March 15, 2012
    Publication date: January 16, 2014
    Applicants: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., JX NIPPON OIL & ENERGY CORPORATION
    Inventor: Masaki Shingu
  • Publication number: 20140018450
    Abstract: A synthesis gas production apparatus (reformer) to be used for a synthesis gas production step in a GTL (gas-to-liquid) process is prevented from being contaminated by metal components. A method of suppressing metal contamination of a synthesis gas production apparatus operating for a GTL process that includes a synthesis gas production step of producing synthesis gas by causing natural gas and gas containing steam and/or carbon dioxide to react with each other for reforming in a synthesis gas production apparatus in which, at the time of separating and collecting a carbon dioxide contained in the synthesis gas produced in the synthesis gas production step and recycling the separated and collected carbon dioxide as source gas for the reforming reaction in the synthesis gas production step, a nickel concentration in the recycled carbon dioxide is not higher than 0.05 ppmv.
    Type: Application
    Filed: March 22, 2012
    Publication date: January 16, 2014
    Applicants: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, CHIYODA CORPORATION, COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., JAPAN PETROLEUM EXPLORATION CO., LTD.
    Inventors: Shuhei Wakamatsu, Fuyuki Yagi, Tomoyuki Mikuriya, Kenichi Kawazuishi
  • Publication number: 20140011896
    Abstract: The method for stopping operation of a reactor is provided with a stop step of stopping supply of a synthesis gas containing a carbon monoxide gas and a hydrogen gas into the reactor; a slurry discharge step of discharging slurry from the reactor; a steam supply step of supplying steam higher in temperature than the decomposition temperatures of metal carbonyls into the reactor, thereby discharging gaseous matters inside the reactor; and a carbon monoxide gas detecting step of detecting an amount of carbon monoxide gas contained in the gaseous matters discharged from the reactor. In the steam supply step, supply of the steam is stopped when an amount of the detected carbon monoxide gas continuously declines to be lower than a predetermined reference value.
    Type: Application
    Filed: March 15, 2012
    Publication date: January 9, 2014
    Applicants: Japan Oil, Gas and Metals National Corporation, INPEX CORPORATION, NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., JX NIPPON OIL & ENERGY CORPORATION
    Inventor: Shinya Arai
  • Publication number: 20140011152
    Abstract: There is provided a top-firing hot blast stove capable of enhancing combustion efficiency in burner system, supplying high-temperature combustion gas to an entire checker chamber, and suppressing damage on a refractory material on an inner wall of a burner duct. A top-firing hot blast stove 10 has a burner system including: a burner 1 for passing fuel gas or combustion air to each of three or more pipe lines in a multiple pipe line structure; and a burner duct 2. A core pipe line 1b and a central pipe line 1c include a swirling flow generating means provided for generating a swirling flow of the fuel gas or the combustion air, while an outermost pipe line 1d carries a linear flow of the fuel gas or the combustion air, so that combustion gas HG including a linear component HG? and a swirling component HG? is generated in the burner duct 2.
    Type: Application
    Filed: March 19, 2012
    Publication date: January 9, 2014
    Applicant: Nippon Steel & Sumikin Engineering Co., Ltd.
    Inventors: Norimasa Maekawa, Koya Inoue, Hiroshi Shimazu, Shunji Koya, Naoki Kunishige, Nobuhiro Ohshita
  • Publication number: 20140004475
    Abstract: There is provided a top-firing hot blast stove including a burner and a burner duct capable of stabilizing an ignition point at a desired position inside the burner duct and suppressing occurrence of blinking phenomenon so as to achieve high combustion efficiency. A top-firing hot blast stove 10 includes a checker chamber 4 and a combustion chamber 3 which includes a burner system and placed above the checker chamber 4.
    Type: Application
    Filed: March 13, 2012
    Publication date: January 2, 2014
    Applicants: NS PLANT DESIGNING CORPORATION, NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventors: Norimasa Maekawa, Koya Inoue, Hiroshi Shimazu, Shunji Koya, Naoki Kunishige, Nobuhiro Ohshita
  • Publication number: 20140004011
    Abstract: A catalyst recovery system that includes a concentrated slurry production unit that concentrates a slurry extracted from a reactor main unit and continuously produces a concentrated slurry, a first discharge unit that discharges the concentrated slurry from the concentrated slurry production unit, a solidified slurry production unit that cools the concentrated slurry discharged from the concentrated slurry production unit, thereby solidifying the liquid medium within the concentrated slurry and producing a solidified slurry, and a recovery mechanism that recovers the solidified slurry from the solidified slurry production unit.
    Type: Application
    Filed: January 13, 2012
    Publication date: January 2, 2014
    Applicants: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Toshiyuki Shibata, Hidekatsu Honda, Akira Kawamura
  • Publication number: 20130327687
    Abstract: According to an aspect of the present invention, there is provided a magnetic-separation filter device that removes contaminants of fine ferromagnetic particles from a fluid containing such contaminants, comprising: a substantially cylindrical housing; two partition plates that are disposed in an inside of the housing so as to extend in a vertical direction of the housing, dividing the inside of the housing by being disposed in parallel to each other; a filter medium that includes a fine amorphous-alloy wire bundle filled in a first region defined by the housing and the two partition plates; and plural permanent magnets that are provided on both sides of the first region outside the housing, wherein the contaminants of fine ferromagnetic particles are adsorbed on the filter media by flowing the fluid containing such contaminants through the first region in which the magnetic field has been formed by these plural permanent magnets.
    Type: Application
    Filed: February 28, 2012
    Publication date: December 12, 2013
    Applicant: NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventors: Kazuki Murahashi, Kentarou Morita, Yuzuru Kato, Atsushi Murata
  • Publication number: 20130305799
    Abstract: Generation of cavitation jet in air on a surface of a work roll provides a higher cleaning force than squirting of only high pressure fluid, so that sticking substances on the surface of the work roll are reliably removable. When a distance between a cleaning nozzle and the surface of the work roll and pressure of the high pressure fluid are controlled within a predetermined range, sticking substances are efficiently removable while roughness of the surface of the work roll is maintained.
    Type: Application
    Filed: May 15, 2012
    Publication date: November 21, 2013
    Applicants: NS PLANT DESIGNING CORPORATION, NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventors: Muneshige Ogawa, Hisamoto Wakabayashi, Makoto Katsube, Hiroshi Nishikawa
  • Publication number: 20130306299
    Abstract: The temperature control system of the present invention is a temperature control system for recovering reaction heat inside a reactor in which an exothermic reaction takes place, thereby controlling a temperature inside the reactor. The temperature control system is provided with a coolant drum in which a liquid coolant is accommodated in a vapor-liquid equilibrium state, a heat removing unit which is disposed on the reactor to internally circulate the liquid coolant supplied from the coolant drum, a temperature determining unit which determines a temperature inside the reactor, and a pressure controller which controls pressure inside the coolant drum. The pressure controller controls the pressure inside the coolant drum based on a difference between an actual temperature inside the reactor determined by the temperature determining unit and a preset temperature value inside the reactor, thereby controlling the temperature of the liquid coolant inside the coolant drum.
    Type: Application
    Filed: January 17, 2012
    Publication date: November 21, 2013
    Applicants: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Kentarou Morita, Yuzuru Kato
  • Publication number: 20130272801
    Abstract: Since the distal backside is provided on a rear side of a wing edge in an entering direction, when a steel pipe pile is rotationally driven into the ground, the distal backside resists against the rotation moment with the wing edge at the center. Thus, while avoiding the off-centered movement of the steel pipe pile and ensuring linearity, the steel pipe pile can be penetrated into the ground. Further, since a slanted opening is provided at a front side of the wing edge in the entering direction, soil excavated in accordance with the rotational drive into the ground can be smoothly introduced into the steel pipe pile body through the slanted opening. Thus, while restraining the ground resistance in accordance with the entering, the soil introduced into the steel pipe pile body can be pushed upward, thereby reducing an increase in the penetration resistance caused by clogging within the pipe.
    Type: Application
    Filed: July 9, 2012
    Publication date: October 17, 2013
    Applicant: NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventors: Masamichi Sawaishi, Masatoshi Wada
  • Publication number: 20130146088
    Abstract: The method for cleaning a reactor of the present invention comprises passing a solvent through a wax-fraction hydrocracking apparatus which is charged with a catalyst and to which supply of a wax fraction is stopped, wherein the solvent comprising at least one oil selected from a group consisting of hydrocarbon and vegetable oils, and having a sulfur content of less than 5 ppm and being in a liquid state at 15° C.
    Type: Application
    Filed: August 12, 2011
    Publication date: June 13, 2013
    Applicants: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Shinya Takahashi, Kazuhiko Tasaka, Yuichi Tanaka, Marie Iwama
  • Publication number: 20130143971
    Abstract: Hydrocarbon oil obtained by Fischer-Tropsch synthesis reaction using a slurry bed reactor holding a slurry of a liquid hydrocarbon in which a catalyst is suspended; the hydrocarbon oil is fractionated into a distilled oil and a column bottom oil containing the catalyst fine powder by a rectifying column; at least part of the column bottom oil is transferred to a storage tank, and the catalyst fine powder is sedimented to the bottom of the storage tank to capture the catalyst fine powder; a residue of the column bottom oil is transferred from the rectifying column to a hydrocracker, and/or the supernatant of the column bottom oil from which the catalyst fine powder is captured by the storage tank is transferred from the storage tank to the hydrocracker; and using the hydrocracker, the residue of the column bottom oil and/or the supernatant of the column bottom oil is hydrocracked.
    Type: Application
    Filed: August 12, 2011
    Publication date: June 6, 2013
    Applicants: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Marie Iwama, Kazuhiko Tasaka, Yuichi Tanaka