Patents Assigned to Omni MedSci, Inc.
  • Patent number: 10201283
    Abstract: A smart phone or tablet includes pulsed laser diodes generating light with near-infrared wavelengths between 700-2500 nanometers. First lenses direct light from the laser diodes to tissue. An array of pulsed laser diodes generates light with near-infrared wavelengths between 700-2500 nanometers. Second lenses form light from the array into spots directed on the tissue. An infrared camera synchronized to the laser diodes and the array generates data based on light reflected from the tissue. The smart phone or tablet generates a two-dimensional or three-dimensional image using the data from the infrared camera. The smart phone or tablet includes a wireless receiver, a wireless transmitter, a display, a voice input module, and a speaker.
    Type: Grant
    Filed: July 8, 2018
    Date of Patent: February 12, 2019
    Assignee: OMNI MEDSCI, INC.
    Inventor: Mohammed N. Islam
  • Patent number: 10188299
    Abstract: A wearable device for measuring physiological parameters includes a light source having a plurality of semiconductor light emitting diodes (LEDs) each configured to generate an output optical beam, wherein at least a portion of the one or more optical beam wavelengths is a near-infrared wavelength. The light source is configured to increase signal-to-noise ratio by increasing light intensity for at least one of the LEDs and by increasing a pulse rate of at least one of the LEDs. A lens is configured to receive the output optical beam and to deliver a lens output beam to tissue. A detection system generates an output signal in response to the lens output beam reflected from the tissue, wherein the detection system is configured to be synchronized to the light source, and is located a different distance from a first one of the LEDs than a second one of the LEDs.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: January 29, 2019
    Assignee: Omni Medsci, Inc.
    Inventor: Mohammed N. Islam
  • Patent number: 10172523
    Abstract: A measurement system includes a light source having semiconductor sources, a multiplexer, and one or more fused silica fibers configured to form an output optical beam having one or more optical wavelengths modulated at a modulation frequency. A light beam set-up includes a monochromator forming a filtered optical beam. A measurement apparatus delivers the filtered optical beam to a sample. A receiver receives a spectroscopy output beam generated from the sample by the filtered optical beam. The receiver is configured to use a lock-in technique that detects the modulation frequency, and to generate first and second signals responsive to light received while the light source is off and on, respectively. The measurement system improves a signal-to-noise ratio of the spectroscopy output beam by differencing the first and second signals. The receiver processes the spectroscopy output beam using chemometrics or multivariate analysis to permit identification of materials within the sample.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: January 8, 2019
    Assignee: OMNI MEDSCI, INC.
    Inventor: Mohammed N. Islam
  • Patent number: 10136819
    Abstract: An imaging device includes laser diodes (LDs) generating near-infrared wavelength light, lenses configured to deliver the light to tissue, a first receiver having one or more detectors, and a first part with at least one of the LDs capable of being pulsed. The first receiver receives light reflected from the tissue and is synchronized to the pulsed light and configured to perform a time-of-flight measurement. An infrared camera receives light reflected by the tissue from a second part of the imaging device. The camera captures light while the second part is off, and while the second part is on to generate corresponding signals, and differences the signals to generate an image. An array of LDs generates a grid of spots on the tissue, which is reflected to the camera. A coupled phone, tablet, or computer receives and processes the time-of-flight measurement, the image, and the reflected grid of spots.
    Type: Grant
    Filed: February 4, 2018
    Date of Patent: November 27, 2018
    Assignee: Omni Medsci, Inc.
    Inventor: Mohammed N. Islam
  • Patent number: 10126283
    Abstract: A smart phone or tablet includes laser diodes configured to be pulsed and generate near-infrared light between 700-2500 nanometers. Lenses direct the light to a sample. A detection system includes a photodiode array with pixels coupled to CMOS transistors, and is configured to receive light reflected from the sample, to be synchronized to the light from the laser diodes, and to perform a time-of-flight measurement of a time difference between light from the laser diodes and light reflected from the sample. The detection system is configured to convert light received while the laser diodes are off into a first signal, and light received while at least one laser diodes is on, which includes light reflected from the sample, into a second signal. The smart phone or tablet is configured to difference the first signal and the second signal and to generate a two-dimensional or three-dimensional image using the time-of-flight measurement.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: November 13, 2018
    Assignee: Omni MedSci, Inc.
    Inventor: Mohammed N. Islam
  • Patent number: 10105059
    Abstract: A wearable device for measuring physiological parameters includes a light source having a plurality of semiconductor light emitting diodes (LEDs) each configured to generate an output optical beam, wherein at least a portion of the one or more optical beam wavelengths is a near-infrared wavelength. The light source is configured to increase signal-to-noise ratio by increasing light intensity for at least one of the LEDs and by increasing a pulse rate of at least one of the LEDs. A lens is configured to receive the output optical beam and to deliver a lens output beam to tissue. A detection system generates an output signal in response to the lens output beam reflected from the tissue, wherein the detection system is configured to be synchronized to the light source, and is located a different distance from a first one of the LEDs than a second one of the LEDs.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: October 23, 2018
    Assignee: OMNI MEDSCI, INC.
    Inventor: Mohammed N. Islam
  • Patent number: 10098546
    Abstract: A wearable device includes a measurement device having light emitting diodes (LEDs) measuring a physiological parameter. The measurement device modulates the LEDs to generate an optical beam having a near-infrared wavelength between 700-2500 nanometers. Lenses receive and deliver the optical beam to tissue, which reflects the optical beam to a receiver having spatially separated detectors coupled to analog-to-digital converters configured to generate receiver outputs. The receiver captures light while the LEDs are off, and reflected light from the tissue while the LEDs are on, to generate first and second signals, respectively. Signal-to-noise ratio is improved by differencing the first and second signals and by differencing the receiver outputs. The measurement device further improves signal-to-noise ratio of the reflected optical beam by increasing light intensity of the LEDs relative to an initial light intensity.
    Type: Grant
    Filed: January 2, 2018
    Date of Patent: October 16, 2018
    Assignee: OMNI MEDSCI, INC.
    Inventor: Mohammed N. Islam
  • Patent number: 10041832
    Abstract: A super continuum light source includes an input light source having semiconductor diodes generating an input beam having a wavelength shorter than 2.5 microns. Optical amplifiers receive the input beam and form an amplified optical beam having a spectral width. The optical amplifiers may include a cladding-pumped fiber amplifier doped with rare-earth materials. A nonlinear element may include mid-infrared fibers to receive the amplified optical beam and to broaden the spectral width of the received amplified optical beam to 100 nm or more through a nonlinear effect forming an output beam, wherein the output beam is pulsed. At least a portion of the output beam is in a mid-infrared wavelength range between 2 microns and 5 microns and at least a portion of the one or more mid-infrared fibers comprises a ZBLAN fluoride fiber coupled to a chalcogenide fiber.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: August 7, 2018
    Assignee: OMNI MEDSCI, INC.
    Inventor: Mohammed N. Islam
  • Patent number: 10004402
    Abstract: Measurement apparatus includes sensors configured to generate signals associated with physiological parameters and adapted to be coupled to tissue comprising blood and to communicate signals associated with the parameters to feedback control circuitry capable of generating physiological information from the signals. A software application is configured to operate on a control system capable of receiving the physiological information and configured to receive voice input signals and manually entered input signals. The control system includes a touch-screen, a proximity sensor, circuitry for obtaining movement information from a positioning sensor, a mechanical system having actuators, and a wireless transmitter to transmit the physiological information over a wireless link to a host.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: June 26, 2018
    Assignee: Omni Medsci, Inc.
    Inventor: Mohammed N. Islam
  • Patent number: 9995722
    Abstract: A measurement system includes a light source having semiconductor sources configured to generate an input optical beam, a multiplexer configured form an intermediate optical beam from the input optical beam, fibers including a fused silica fiber configured to receive the intermediate optical beam and to form an output optical beam. The output optical beam comprises wavelengths between 700 and 2500 nanometers with a bandwidth of at least 10 nanometers. A measurement apparatus is configured to deliver the output beam to a sample to generate a spectroscopy output beam. A receiver is configured to receive and process the spectroscopy output beam to generate an output signal, wherein the receiver processing includes chemometrics or multivariate analysis methods to permit identification of materials within the sample, the light source and the receiver are remote from the sample, and the sample includes plastics or food industry goods.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: June 12, 2018
    Assignee: Omni Medsci, Inc.
    Inventor: Mohammed N. Islam
  • Patent number: 9993159
    Abstract: A system and method for using near-infrared or short-wave infrared (SWIR) light sources for early detection and monitoring of breast cancer, as well as other kinds of cancers may detect decreases in lipid content and increases in collagen content, possibly with a shift in the collagen peak wavelengths and changes in spectral features associated with hemoglobin and water content as well. Wavelength ranges between 1000-1400 nm and 1600-1800 nm may permit relatively high penetration depths because they fall within local minima of water absorption, scattering loss decreases with increasing wavelength, and they have characteristic signatures corresponding to overtone and combination bands from chemical bonds of interest, such as hydrocarbons. Broadband light sources and detectors permit spectroscopy in transmission, reflection, and/or diffuse optical tomography. High signal-to-noise ratio may be achieved using a fiber-based super-continuum light source.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: June 12, 2018
    Assignee: OMNI MEDSCI, INC.
    Inventor: Mohammed N. Islam
  • Patent number: 9897584
    Abstract: A measurement system performs non-destructive quality control or constitutive analysis using a light source generating an output optical beam using semiconductor sources that generate an input optical beam, a multiplexer configured to receive the input beam and to form an intermediate optical beam, and fibers configured to receive the intermediate beam and to form the output beam. The fibers include a fused silica fiber having a core diameter less than 400 microns. The output beam includes wavelengths between 700 and 2500 nanometers and has a bandwidth of at least 10 nanometers. The system includes a measurement apparatus that receives the output beam and delivers the beam to a sample to generate a spectroscopy beam. A receiver is configured to receive the spectroscopy beam and process the beam to generate an output signal. The light source and receiver are remote from the sample, which includes plastics or food industry goods.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: February 20, 2018
    Assignee: Omni Medsci, Inc.
    Inventor: Mohammed N. Islam
  • Patent number: 9885698
    Abstract: A wearable device for use with a smart phone or tablet includes a measurement device having a light source with a plurality of light emitting diodes (LEDs) for measuring physiological parameters and configured to generate an optical beam with wavelengths including a near-infrared wavelength between 700 and 2500 nanometers. The measurement device includes lenses configured to deliver the optical beam to a sample of skin or tissue, which reflects the optical beam to a receiver located a first distance from one of the LEDs and a different distance from another of the LEDs, and is also configured to generate an output signal representing a non-invasive measurement on blood contained within the sample. The wearable device is configured to communicate with the smart phone or tablet, which receives, processes, stores and displays the output signal with the processed output signal configured to be transmitted over a wireless transmission link.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: February 6, 2018
    Assignee: Omni Medsci, Inc.
    Inventor: Mohammed N. Islam
  • Patent number: 9861286
    Abstract: A wearable device for use with a smart phone or tablet includes LEDs for measuring physiological parameters by modulating the LEDs and generating a near-infrared multi-wavelength optical beam. At least one LED emits at a first wavelength having a first penetration depth and at least another LED emits at a second wavelength having a second penetration depth into tissue. The device includes lenses that deliver the optical beam to the tissue, which reflects the first and second wavelengths. A receiver is configured to capture light while the LEDs are off and while at least one of the LEDs is on and to difference corresponding signals to improve a signal-to-noise ratio of the optical beam reflected from the tissue. The signal-to-noise ratio is further increased by increasing light intensity of at least one of the LEDs. The device generates an output signal representing a non-invasive measurement on blood within the tissue.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: January 9, 2018
    Assignee: Omni Medsci, Inc.
    Inventor: Mohammed N. Islam
  • Patent number: 9797876
    Abstract: A measurement system includes semiconductor light sources generating an input beam, optical amplifiers receiving the input beam and delivering an intermediate beam, and fused silica fibers with core diameters less than 400 microns receiving and delivering the intermediate beam to the fibers forming a first optical beam. A nonlinear element receives the first optical beam and broadens the spectrum to at least 10 nm through a nonlinear effect to form the output optical beam which includes a near-infrared wavelength of 700-2500 nm. A measurement apparatus is configured to receive the output optical beam and deliver it to a sample to generate a spectroscopy output beam. A receiver receives the spectroscopy output beam having a bandwidth of at least 10 nm and processes the beam to generate an output signal, wherein the light source and the receiver are remote from the sample, and wherein the sample comprises plastics or food industry goods.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: October 24, 2017
    Assignee: Omni Medsci, Inc.
    Inventor: Mohammed N. Islam
  • Patent number: 9770174
    Abstract: A measurement apparatus includes sensors adapted to be coupled to tissue containing blood and configured to generate signals associated with physiological parameters. The device is configured to communicate with a software application through a base device. The software application is configured to operate on a control system. The control system is capable of receiving physiological parameter signals. The control system includes a touch-screen, a proximity sensor, circuitry for obtaining movement information from a positioning sensor, a mechanical system having actuators, and a wireless transmitter to transmit data to a host. The software application is operable to generate the physiological information based on the signals from the sensors. The control system is further configured to receive voice input signals and manually entered input signals. The host is configured to generate status information from the data and includes a memory storage device and a communication device.
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: September 26, 2017
    Assignee: Omni Medsci, Inc.
    Inventor: Mohammed N. Islam
  • Patent number: 9757040
    Abstract: A wearable device for use with a smart phone or tablet includes a measurement device having a plurality of LEDs generating a near-infrared input optical beam that measures physiological parameters. The measurement device includes lenses configured to receive and to deliver the input beam to skin which reflects the beam. The measurement device includes a reflective surface configured to receive and redirect the light from the skin, and a receiver configured to receive the reflected beam. The light source is configured to increase a signal-to-noise ratio of the input beam reflected from the skin by increasing the light intensity from the LEDs and modulation of the LEDs. The measurement device is configured to generate an output signal representing a non-invasive measurement on blood contained within the skin. The wearable device is configured to wirelessly communicate with the smart phone or tablet which receives and processes the output signal.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: September 12, 2017
    Assignee: Omni Medsci, Inc.
    Inventor: Mohammed N. Islam
  • Patent number: 9726539
    Abstract: A white light spectroscopy system includes a super continuum light source having an input light source including semiconductor diodes to generate an input beam having a wavelength shorter than 2.5 microns. The light source includes a cladding-pumped fiber optical amplifier to receive the input beam, and a photonic crystal fiber to receive the amplified optical beam to broaden the spectral width to 100 nm or more forming an output beam in the visible wavelength range. The output beam is pulsed with a repetition rate of 1 Megahertz or higher. The system also includes a lens and/or mirror to receive the output beam, to send the output beam to a scanning stage, and to deliver the received output beam to a sample. A detection system includes dispersive optics and narrow band filters followed by one or more detectors to permit approximately simultaneous measurement of at least two wavelengths from the sample.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: August 8, 2017
    Assignee: Omni Medsci, Inc.
    Inventor: Mohammed N. Islam
  • Patent number: 9651533
    Abstract: A measurement system includes a wearable measurement device for measuring one or more physiological parameters, including a light source comprising a plurality of light emitting diodes (LEDs) configured to generate an output optical beam with a near-infrared wavelength between 700 nanometers and 2500 nanometers. The light source is configured to increase signal-to-noise ratio by increasing a light intensity and pulse rate of the LEDs. The system includes a plurality of lenses configured to receive the output optical beam and to deliver an analysis output beam to a sample. The wearable measurement device includes a receiver configured to process the analysis output beam reflected or transmitted from the sample and to generate an output signal that may be transmitted to a remote device configured to process the received output status to generate processed data and to store the processed data.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: May 16, 2017
    Assignee: Omni Medsci, Inc.
    Inventor: Mohammed N. Islam
  • Patent number: 9500635
    Abstract: A system and method for using near-infrared or short-wave infrared (SWIR) sources such as lamps, thermal sources, LED's, laser diodes, super-luminescent laser diodes, and super-continuum light sources for early detection of dental caries measure transmission and/or reflectance. In the SWIR wavelength range, solid, intact teeth may have a low reflectance or high transmission with very few spectral features while a carious region exhibits more scattering, so the reflectance increases in amplitude. The spectral dependence of the transmitted or reflected light from the tooth may be used to detect and quantify the degree of caries. Instruments for applying SWIR light to one or more teeth may include a C-clamp design, a mouth guard design, or hand-held devices that may augment other dental tools. The measurement device may communicate with a smart phone or tablet, which may transmit a related signal to the cloud, where additional value-added services are performed.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: November 22, 2016
    Assignee: OMNI MEDSCI, INC.
    Inventor: Mohammed N. Islam