Patents Assigned to Omni MedSci, Inc.
  • Patent number: 9500635
    Abstract: A system and method for using near-infrared or short-wave infrared (SWIR) sources such as lamps, thermal sources, LED's, laser diodes, super-luminescent laser diodes, and super-continuum light sources for early detection of dental caries measure transmission and/or reflectance. In the SWIR wavelength range, solid, intact teeth may have a low reflectance or high transmission with very few spectral features while a carious region exhibits more scattering, so the reflectance increases in amplitude. The spectral dependence of the transmitted or reflected light from the tooth may be used to detect and quantify the degree of caries. Instruments for applying SWIR light to one or more teeth may include a C-clamp design, a mouth guard design, or hand-held devices that may augment other dental tools. The measurement device may communicate with a smart phone or tablet, which may transmit a related signal to the cloud, where additional value-added services are performed.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: November 22, 2016
    Assignee: OMNI MEDSCI, INC.
    Inventor: Mohammed N. Islam
  • Patent number: 9500634
    Abstract: A system and method for using near-infrared or short-wave infrared (SWIR) light sources between approximately 1.4-1.8 microns, 2-2.5 microns, 1.4-2.4 microns, 1-1.8 microns for active remote sensing or hyper-spectral imaging for detection of natural gas leaks or exploration sense the presence of hydro-carbon gases such as methane and ethane. Most hydro-carbons (gases, liquids and solids) exhibit spectral features in the SWIR, which may also coincide with atmospheric transmission windows (e.g., approximately 1.4-1.8 microns or 2-2.5 microns). Active remote sensing or hyper-spectral imaging systems may include a fiber-based super-continuum laser and a detection system and may reside on an aircraft, vehicle, handheld, or stationary platform. Super-continuum sources may emit light in the near-infrared or SWIR.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: November 22, 2016
    Assignee: OMNI MEDSCI, INC.
    Inventor: Mohammed N. Islam
  • Patent number: 9494567
    Abstract: Non-invasive monitoring of blood constituents such as glucose, ketones, or hemoglobin A1c may be accomplished using near-infrared or short-wave infrared (SWIR) light sources through absorbance, diffuse reflection, or transmission spectroscopy. As an example, hydro-carbon related substances such as glucose or ketones have distinct spectral features in the SWIR between approximately 1500 and 2500 nm. An SWIR super-continuum laser based on laser diodes and fiber optics may be used as the light source for the non-invasive monitoring. Light may be transmitted or reflected through a tooth, since an intact tooth and its enamel and dentine may be nearly transparent in the SWIR. Blood constituents or analytes within the capillaries in the dental pulp may be detected. The non-invasive monitoring device may communicate with a device such as a smart phone or tablet, which may transmit a signal related to the measurement to the cloud with cloud-based value-added services.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: November 15, 2016
    Assignee: Omni Medsci, Inc.
    Inventor: Mohammed N. Islam
  • Patent number: 9476769
    Abstract: An optical system includes a tunable semiconductor light emitter that generates an input beam having a wavelength shorter than about 2.5 microns, an optical isolator coupled to the emitter and configured to block reflected light into the emitter, an optical amplifier receiving the input beam and outputting an intermediate beam, and optical fibers receiving the intermediate beam and forming an output beam. A subsystem includes lenses or mirrors that deliver the output beam to a sample. The subsystem may include an Optical Coherence Tomography (OCT) apparatus having a sample arm and a reference arm, the output beam having a temporal duration greater than approximately 30 picoseconds, a repetition rate between continuous wave and Megahertz or higher, and a time averaged intensity less than approximately 50 MW/cm2. The system may also include a light detection system collecting any of the output beam that reflects or transmits from the sample.
    Type: Grant
    Filed: September 22, 2015
    Date of Patent: October 25, 2016
    Assignee: Omni Medsci, Inc.
    Inventor: Mohammed N. Islam
  • Patent number: 9456750
    Abstract: A diagnostic system includes sensors with at least one being a diagnostic device comprising one or more solid state light sources used in a measurement. A software application capable of generating physiological information based on the sensors is operable on a control system adapted to receive, store and process the physiological information. The control system includes a touch-screen, circuitry for obtaining position information from a location sensor, and a wireless transceiver to transmit wireless data including the physiological information over a wireless link and is further capable of receiving voice and manually entered input signals. A host includes a digital file for receiving and storing the wireless data, control logic to process the wireless data to generate a status of the user, memory for recording the status, and an output for communicating the status or associated information over a communication link to display output devices located remotely from the host.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: October 4, 2016
    Assignee: Omni Medsci, Inc.
    Inventor: Mohammed N. Islam
  • Patent number: 9456751
    Abstract: A diagnostic system includes a sensor configured to generate signals associated with physiological parameters, a proximity sensor, a positioning sensor, and a software application configured to operate on a control system adapted to receive and process physiological information including a touch-screen, a mechanical system having actuators, and a wireless transmitter to transmit data over a wireless link to a host. The software application is operable to generate the physiological information using the signals from the sensor. The control system receives voice and manually entered input signals. The host generates status information from the date and includes a memory storage device for recording the status information and a communication device for communicating the status information over a communication link to one or more display output devices located remotely from the host.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: October 4, 2016
    Assignee: Omni Medsci, Inc.
    Inventor: Mohammed N. Islam
  • Patent number: 9400215
    Abstract: A diagnostic system includes a semiconductor light emitter(s) configured to generate an input beam having a wavelength shorter than about 2.5 microns. An optical amplifier(s) configured to receive a portion of the input beam communicates an intermediate beam to an output end of the optical amplifier. An optical fiber(s) configured to receive a portion of the intermediate beam forms an output beam with an associated wavelength. A subsystem having lenses or mirrors receives a received portion of the output beam and delivers a delivered portion of the output beam to a sample. The delivered portion has a temporal duration greater than approximately 30 picoseconds and a repetition rate between continuous wave and Megahertz or higher. A time averaged intensity of the delivered portion is less than approximately 50 MW/cm2. A light detection system collects and analyzes a fraction of the delivered portion that reflects or transmits from the sample.
    Type: Grant
    Filed: May 19, 2015
    Date of Patent: July 26, 2016
    Assignee: Omni Medsci, Inc.
    Inventor: Mohammed N. Islam
  • Publication number: 20150316415
    Abstract: A system and method for using near-infrared or short-wave infrared (SWIR) light sources between approximately 1.4-1.8 microns, 2-2.5 microns, 1.4-2.4 microns, 1-1.8 microns for active remote sensing or hyper-spectral imaging for detection of natural gas leaks or exploration sense the presence of hydro-carbon gases such as methane and ethane. Most hydro-carbons (gases, liquids and solids) exhibit spectral features in the SWIR, which may also coincide with atmospheric transmission windows (e.g., approximately 1.4-1.8 microns or 2-2.5 microns). Active remote sensing or hyper-spectral imaging systems may include a fiber-based super-continuum laser and a detection system and may reside on an aircraft, vehicle, handheld, or stationary platform. Super-continuum sources may emit light in the near-infrared or SWIR.
    Type: Application
    Filed: December 17, 2013
    Publication date: November 5, 2015
    Applicant: OMNI MEDSCI, INC.
    Inventor: Mohammed N. ISLAM
  • Publication number: 20150305658
    Abstract: Non-invasive monitoring of blood constituents such as glucose, ketones, or hemoglobin A1c may be accomplished using near-infrared or short-wave infrared (SWIR) light sources through absorbance, diffuse reflection, or transmission spectroscopy. As an example, hydro-carbon related substances such as glucose or ketones have distinct spectral features in the SWIR between approximately 1500 and 2500 nm. An SWIR super-continuum laser based on laser diodes and fiber optics may be used as the light source for the non-invasive monitoring. Light may be transmitted or reflected through a tooth, since an intact tooth and its enamel and dentine may be nearly transparent in the SWIR. Blood constituents or analytes within the capillaries in the dental pulp may be detected. The non-invasive monitoring device may communicate with a device such as a smart phone or tablet, which may transmit a signal related to the measurement to the cloud with cloud-based value-added services.
    Type: Application
    Filed: December 17, 2013
    Publication date: October 29, 2015
    Applicant: OMNI MEDSCI. INC.
    Inventor: Mohammed N. ISLAM
  • Publication number: 20150305627
    Abstract: A system and method for using near-infrared or short-wave infrared (SWIR) sources such as lamps, thermal sources, LED's, laser diodes, super-luminescent laser diodes, and super-continuum light sources for early detection of dental caries measure transmission and/or reflectance. In the SWIR wavelength range, solid, intact teeth may have a low reflectance or high transmission with very few spectral features while a carious region exhibits more scattering, so the reflectance increases in amplitude. The spectral dependence of the transmitted or reflected light from the tooth may be used to detect and quantify the degree of caries. Instruments for applying SWIR light to one or more teeth may include a C-clamp design, a mouth guard design, or hand-held devices that may augment other dental tools. The measurement device may communicate with a smart phone or tablet, which may transmit a related signal to the cloud, where additional value-added services are performed.
    Type: Application
    Filed: December 17, 2013
    Publication date: October 29, 2015
    Applicant: OMNI MEDSCI, INC.
    Inventor: Mohammed N. ISLAM
  • Patent number: 9164032
    Abstract: A system and method for using near-infrared or short-wave infrared (SWIR) light sources for identification of counterfeit drugs may perform spectroscopy using a super-continuum laser to provide detection in a non-contact and non-destructive manner at stand-off or remote distances with minimal sample preparation. Also, near-infrared or SWIR light may penetrate through plastic containers and packaging, permitting on-line inspection and rapid scanning. The near-infrared or SWIR spectroscopy may also be used to detect illicit drugs and their chemical composition. Moreover, the spectroscopic techniques may also be applied to quality assessment and control in pharmaceutical manufacturing, thus permitting the implementation of smart manufacturing with feedback control. Fiber super-continuum lasers may emit light in the near-infrared or SWIR between approximately 1.4-1.8 microns, 2-2.5 microns, 1.4-2.4 microns, 1-1.8 microns.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: October 20, 2015
    Assignee: OMNI MEDSCI, INC.
    Inventor: Mohammed N. Islam
  • Patent number: 9077146
    Abstract: An optical system for use in material processing includes a plurality of semiconductor diodes coupled to a beam combiner to generate a multiplexed optical beam. A cladding pumped fiber amplifier or laser receives the multiplexed optical beam and forms an intermediate beam having at least a first wavelength. An optical element receives the intermediate beam and forms an output beam with an output beam wavelength, wherein the output beam wavelength is at least in part longer than the first wavelength. A subsystem includes lenses or mirrors to deliver a delivered portion of the output beam to a sample. The delivered output beam has a temporal duration greater than about 30 picoseconds, a repetition rate between continuous wave and Megahertz or higher, and a time averaged intensity of less than approximately 50 MW/cm2. The output beam has a time averaged output power of 20 mW or more.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: July 7, 2015
    Assignee: Omni Medsci, Inc.
    Inventor: Mohammed N. Islam
  • Patent number: 9066736
    Abstract: A laser-based method and system for selectively processing target tissue material in a patient and optical catheter assembly for use therein are provided. The system includes a laser subsystem for generating an output laser beam. The system further includes a catheter assembly including at least one optical fiber having a proximal end coupled to the laser subsystem for guiding the output laser beam along a propagation path. The beam has optical and temporal properties and a predetermined selected wavelength. The catheter assembly is sized to extend through an opening in a first part of the patient and to a tissue material processing site within the patient.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: June 30, 2015
    Assignee: OMNI MEDSCI, INC.
    Inventor: Mohammed N. Islam
  • Patent number: 9055868
    Abstract: A diagnostic system includes a plurality of semiconductor diodes, a multiplexer, and one or more waveguide structures to form an output beam. A lens system communicates some of the output beam onto a part of a user's body comprising blood to perform a measurement. A software application is capable of generating data based at least in part on the measurement, and it operates on a control system that may have a touch-screen, a proximity sensor, and a wireless transceiver to transmit wireless data over a wireless link. A host comprises a digital file, control logic at the host to process at least the portion of the wireless data to generate a status of the user, a memory storage device for recording the status, and an output for communicating at least a portion of the status or associated information over a communication link to one or more remote display output devices.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: June 16, 2015
    Assignee: OMNI MEDSCI, INC.
    Inventor: Mohammed N. Islam
  • Patent number: 8971681
    Abstract: An optical system for use in an imaging procedure includes one or more semiconductor diodes configured to generate an input signal beam with a wavelength shorter than 2.5 microns that is amplified and communicated through optical fiber(s) to a nonlinear element configured to broaden the spectral width to at least 50 nm through a nonlinear effect. A subsystem includes lenses or mirrors to deliver an output beam having a broadened spectrum to an Optical Coherence Tomography apparatus with a sample and reference arm to perform imaging for characterizing the sample. The delivered output beam has a temporal duration greater than about 30 picoseconds, a repetition rate between continuous wave and Megahertz or higher, and a time averaged intensity of less than approximately 50 MW/cm2. The output beam has a time averaged output power of 20 mW or more.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: March 3, 2015
    Assignee: Omni Medsci, Inc.
    Inventor: Mohammed N. Islam
  • Publication number: 20150008344
    Abstract: An optical system for use in material processing includes a plurality of semiconductor diodes coupled to a beam combiner to generate a multiplexed optical beam. A cladding pumped fiber amplifier or laser receives the multiplexed optical beam and forms an intermediate beam having at least a first wavelength. An optical element receives the intermediate beam and forms an output beam with an output beam wavelength, wherein the output beam wavelength is at least in part longer than the first wavelength. A subsystem includes lenses or mirrors to deliver a delivered portion of the output beam to a sample. The delivered output beam has a temporal duration greater than about 30 picoseconds, a repetition rate between continuous wave and Megahertz or higher, and a time averaged intensity of less than approximately 50 MW/cm2. The output beam has a time averaged output power of 20 mW or more.
    Type: Application
    Filed: February 21, 2014
    Publication date: January 8, 2015
    Applicant: OMNI MEDSCI, INC.
    Inventor: Mohammed N. ISLAM
  • Patent number: 8848282
    Abstract: A light-based medical diagnostic system includes a plurality of semiconductor diodes with pump beams and a multiplexer capable of combining the pump beams and generating at least a multiplexed pump beam comprising one or more wavelengths. A first waveguide structure is configured to receive at least a portion of the one or more wavelengths and outputs a first optical beam. A second waveguide structure is configured to receive at least a portion of the first optical beam and to communicate at least the portion of the first optical beam to an output end of the second waveguide structure to form an output beam. A lens system is configured to receive at least a portion of the output beam and to communicate at least the portion of the output beam onto a part of a patient's body, such as a patient's blood.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: September 30, 2014
    Assignee: Omni Medsci, Inc.
    Inventor: Mohammed N. Islam
  • Publication number: 20140236021
    Abstract: A system and method for using near-infrared or short-wave infrared (SWIR) light sources for early detection and monitoring of breast cancer, as well as other kinds of cancers may detect decreases in lipid content and increases in collagen content, possibly with a shift in the collagen peak wavelengths and changes in spectral features associated with hemoglobin and water content as well. Wavelength ranges between 1000-1400 nm and 1600-1800 nm may permit relatively high penetration depths because they fall within local minima of water absorption, scattering loss decreases with increasing wavelength, and they have characteristic signatures corresponding to overtone and combination bands from chemical bonds of interest, such as hydrocarbons. Broadband light sources and detectors permit spectroscopy in transmission, reflection, and/or diffuse optical tomography. High signal-to-noise ratio may be achieved using a fiber-based super-continuum light source.
    Type: Application
    Filed: December 17, 2013
    Publication date: August 21, 2014
    Applicant: OMNI MEDSCI, INC.
    Inventor: Mohammed N. Islam
  • Publication number: 20140188092
    Abstract: Focused infrared light at wavelengths selected to target tissue below the skin may be used in a non-invasive procedure for vasectomies, varicose veins, hemorrhoids, or fungal nail infections. Infrared light from various sources selected for a particular application may be focused so that the cone of light has lower intensity on the skin/outer tissue and higher intensity at a desired depth to cause thermal coagulation or occlusion of the target tissue beneath the skin. Surface cooling techniques, such as cryogenic sprays or contact cooling may be used to protect the skin. More generally, the focused infrared light with or without surface cooling may be used in applications for thermally coagulating or occluding relatively shallow vessels while protecting or minimizing damage to outer layers of the tissue or skin.
    Type: Application
    Filed: December 17, 2013
    Publication date: July 3, 2014
    Applicant: OMNI MEDSCI, INC.
    Inventor: Mohammed N. Islam
  • Publication number: 20140188094
    Abstract: Focused infrared light may be used in a non-invasive varicose vein treatment procedure with infrared light from a plurality of laser diodes that are combined in a multiplexer and coupled to a multi-mode fiber coupled to another fiber or fiber bundle that delivers the light to a lens/mirror assembly for application in the non-invasive procedures. The wavelength of light may be selected near 980 nm, 1210 nm, or 1720 nm to achieve a desired penetration depth and/or for absorption in a particular tissue type or water. Wavelengths near approximately 1100 nm, 1310 nm or 1650 nm may be advantageous for non-invasive procedures through the skin. The light may be focused with lower intensity on the skin or outer tissue to reduce collateral damage and higher intensity at a desired depth to induce thermal coagulation or occlusion at depths of about 1-2 mm or more. Surface cooling techniques, such as cryogenic sprays or contact cooling may be provided.
    Type: Application
    Filed: December 17, 2013
    Publication date: July 3, 2014
    Applicant: OMNI MEDSCI, INC.
    Inventor: Mohammed N. Islam