Patents Assigned to PHILIPS IP VENTURES B.V.
  • Patent number: 10763699
    Abstract: A detection method for use in a primary unit of an inductive power transfer system, the primary unit being operable to transmit power wirelessly by electromagnetic induction to at least one secondary unit of the system located in proximity to the primary unit and/or to a foreign object located in said proximity, the method comprising: driving the primary unit so that in a driven state the magnitude of an electrical drive signal supplied to one or more primary coils of the primary unit changes from a first value to a second value; assessing the effect of such driving on an electrical characteristic of the primary unit; and detecting in dependence upon the assessed effect the presence of a said secondary unit and/or a foreign object located in proximity to said primary unit.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: September 1, 2020
    Assignee: PHILIPS IP VENTURES B.V.
    Inventors: Jonathan Richard Dibben, Willy Henri Lemmens, David James Hough, Hendrik Cannoodt, John De Clercq
  • Patent number: 10673281
    Abstract: An inductive power transfer system comprises a primary unit, having a primary coil and an electrical drive unit which applies electrical drive signals to the primary coil so as to generate an electromagnetic field. The system also comprises at least one secondary device, separable from the primary unit and having a secondary coil which couples with the field when the secondary device is in proximity to the primary unit. A control unit causes a circuit including said primary coil to operate, during a measurement period, in an undriven resonating condition. In this condition the application of the drive signals to the primary coil by the electrical drive unit is suspended so that energy stored in the circuit decays over the course of the period. A decay measurement unit takes one or more measures of such energy decay during the measurement period.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: June 2, 2020
    Assignee: PHILIPS IP VENTURES B.V.
    Inventors: Michael Craig Stevens, Alexander Charles Knill, John Robert Dunton
  • Patent number: 10530188
    Abstract: A remote device in accordance with the present invention includes an adaptive power receiver that receives wireless power from the wireless power supply by induction. The adaptive power receiver may be switched among two or more modes of operation, including, for example, a high-Q mode and a low-Q mode. By controlling the switching between modes, the amount of energy received by the adaptive receiver may be controlled. This control is a form of adaptive resonance control or Q control.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: January 7, 2020
    Assignee: Philips IP Ventures B.V.
    Inventors: David W. Baarman, Colin J. Moore, Joshua B. Taylor, Matthew J. Norconk, Thomas J. Leppien, Scott A. Mollema, Joshua K. Schwannecke, Benjamin C. Moes, A. Esai Umenei, John James Lord, Robert D. Gruich
  • Patent number: 10505385
    Abstract: A contactless power supply has a dynamically configurable tank circuit powered by an inverter. The contactless power supply is inductively coupled to one or more loads. The inverter is connected to a DC power source. When loads are added or removed from the system, the contactless power supply is capable of modifying the resonant frequency of the tank circuit, the inverter frequency, the inverter duty cycle or the rail voltage of the DC power source.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: December 10, 2019
    Assignee: Philips IP Ventures B.V.
    Inventor: David W. Baarman
  • Patent number: 10439437
    Abstract: An adaptive inductive ballast is provided with the capability to communicate with a remote device powered by the ballast. To improve the operation of the ballast, the ballast changes its operating characteristics based upon information received from the remote device. Further, the ballast may provide a path for the remote device to communicate with device other than the adaptive inductive ballast.
    Type: Grant
    Filed: May 18, 2016
    Date of Patent: October 8, 2019
    Assignee: PHILIPS IP VENTURES B.V.
    Inventor: David W. Baarman
  • Patent number: 10312732
    Abstract: An inductive power supply system includes a non-contact power supply for energizing a device. The inductive power supply system includes a communication system for enabling communication between a device and the system. The device transmits an identifier to the system. If the device does not have a transmitter, the system attempts to determine the type of device from a characterization of the power consumption by the device. If the device cannot be characterized, the inductive power supply system can be operated manually.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: June 4, 2019
    Assignee: PHILIPS IP VENTURES B.V.
    Inventors: David W. Baarman, John J. Lord, Nathan P. Stien, Wesley J. Bachman
  • Patent number: 10305329
    Abstract: An inductive power supply system to identify remote devices using unique identification frequencies. The system includes an AIPS and a tank circuit capable of inductively providing power to a remote device at different frequencies, and a sensor for sensing the reflected impedance of the remote device at tank circuit. The system further includes a plurality of different remote devices, each having a unique resonance frequency. In operation, the AIPS is capable of identifying the type of remote device present in the inductive field by applying power to a remote device at a plurality of unique identification frequencies until the remote device establishes resonance in response to one of the identification frequencies. The AIPS includes a controller that recognizes when resonance has been established by evaluating sensor data, which is representative of the reflected impedance of the remote device.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: May 28, 2019
    Assignee: PHILIPS IP VENTURES B.V.
    Inventors: David W. Baarman, Scott A. Mollema
  • Patent number: 10277279
    Abstract: A communication system that uses keyed modulation to encode fixed frequency communications on a variable frequency power transmission signal in which a single communication bit is represented by a plurality of modulations. To provide a fixed communication rate, the number of modulations associated with each bit is dynamic varying as a function of the ratio of the communication frequency to the carrier signal frequency. In one embodiment, the present invention provides dynamic phase-shift-keyed modulation in which communications are generated by toggling a load at a rate that is a fraction of the power transfer frequency. In another embodiment, the present invention provides communication by toggling a load in the communication transmitter at a rate that is phase locked and at a harmonic of the power transfer frequency. In yet another embodiment, the present invention provides frequency-shift-keyed modulation, including, for example, modulation at one of two different frequencies.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: April 30, 2019
    Assignee: PHILIPS IP VENTURES B.V.
    Inventors: Matthew J. Norconk, Joshua K. Schwannecke, Colin J. Moore, Joshua B. Taylor, Neil W. Kuyvenhoven, Dale R. Liff, Jason L. Amistadi, Robert D. Gruich, Arthur Kelley, Kenneth C. Armstrong
  • Patent number: 10277070
    Abstract: A wireless power distribution and control system may be used to supply power wirelessly to various devices. The devices in the system may have control over the system and/or over certain features of other devices. For example, a smartphone charging in the wireless power distribution and control system may have access to and control over other devices in the system, such as the overhead lights, or a projector in a conference room. The identification of other devices, as well as commands for controlling these devices may be communicated over the wireless power link. The type and degree of control of each device in that system may vary based on access control levels for the power supplies and connected devices. The devices that receive power may be configured to automatically connect with the power distribution system and to monitor the other devices connected to the system.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: April 30, 2019
    Assignee: PHILIPS IP VENTURES B.V.
    Inventor: David W. Baarman
  • Patent number: 10250083
    Abstract: The present invention relates to wireless power supplies adapted to supply power and communicate with one or more remote devices. The systems and methods of the present invention generally relate to a communication timing system that may ensure information being communicated does not overlap with that of another device, preventing data collisions and information from going undetected. With information being communicated in a way that addresses or avoids potential communication issues in multiple device systems, the wireless power supply may control operation to effectively supply wireless power.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: April 2, 2019
    Assignee: PHILIPS IP VENTURES B.V.
    Inventors: Joshua B. Taylor, Matthew J. Norconk, Colin J. Moore, Benjamin C. Moes, Merdad Veiseh, Dale R. Liff, Mark A. Blaha, Jason L. Amistadi
  • Patent number: 10225966
    Abstract: A composite metal surface that looks metallic, but permits effective transmission of an electromagnetic field. The composite metal surface can be integrated into various electronic equipment, such as telephones, remote controls, battery doors, keyboards, mice, game controllers, cameras, laptops, inductive power supplies, and essentially any other electronic equipment. The composite metal surface can also be integrated into non-electrically conductive heat sinks, high permeability shielding, and polished metal non-electrically conductive surfaces.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: March 5, 2019
    Assignee: PHILIPS IP VENTURES B.V.
    Inventors: David W. Baarman, Benjamin C. Moes, Neil W. Kuyvenhoven, Joshua K. Schwannecke, Roy M. Taylor, Jr., Kaitlyn J. Turner, Robert Wolford, Matthew J. Norconk, Ryan D. Schamper
  • Patent number: 10199877
    Abstract: The present invention relates to a wireless power supply system including a remote device capable of both transmitting and receiving power wirelessly. The remote device includes a self-driven synchronous rectifier. The wireless power supply system may also include a wireless power supply configured to enter an OFF state in which no power, or substantially no power, is drawn, and to wake from the OFF state in response to receiving power from a remote device.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: February 5, 2019
    Assignee: PHILIPS IP VENTURES B.V.
    Inventors: Joseph C. Van Den Brink, Joshua B. Taylor, Matthew J. Norconk, Colin J. Moore, Benjamin C. Moes, Neil W. Kuyvenhoven, David W. Baarman
  • Patent number: 10198892
    Abstract: A system is disclosed for charging or billing for access to wireless power. The device requiring power communicates with the power provider and the billing method is determined. A consumer may be required to provide billing information, or if the billing information is already associated with an existing account, the consumer account is automatically charged for the wireless power. The account may include prepaid charging minutes that are debited as wireless power is provided, or the account may be billed for the wireless power that is provided. The charging/billing for the wireless power may be used to receive value for the power that is provided, while remaining consumer friendly.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: February 5, 2019
    Assignee: PHILIPS IP VENTURES B.V.
    Inventors: Joshua B. Taylor, David W. Baarman, Scott A. Mollema
  • Patent number: 10193394
    Abstract: A wireless power receiver capable of receiving wireless power from close-coupled and mid-range wireless power supplies. The wireless power receiver includes a principal and supplemental receiver circuits. The principle receiver circuit is adjustable to operate in a close-coupled mode or a resonator mode. In close-coupled mode, the principle receiver circuit is coupled to the power input of a remote device and functions as the principle power source. In resonator-mode, the principle power circuit is electrically disconnected/isolated from the remote device and forms a closed resonant loop to function as a resonator that amplifies an electromagnetic field from a mid-range wireless power supply. The supplemental receiver circuit is coupled to the power input of the remote device and is configured to receive wireless power from the resonator and function as the power source when the principle receiver circuit is in the resonator mode.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: January 29, 2019
    Assignee: PHILIPS IP VENTURES B.V.
    Inventors: Matthew J. Norconk, Colin J. Moore, Joshua B. Taylor
  • Patent number: 10193389
    Abstract: A power supply with a multi-bridge topology configured to provide multiple different bridge topologies during operation. The power supply includes a plurality of half-bridge circuits connected to a controller. The controller can selectively configure the power supply between a plurality of different bridge topologies during operation by controlling the half-bridge circuit.
    Type: Grant
    Filed: May 2, 2017
    Date of Patent: January 29, 2019
    Assignee: PHILIPS IP VENTURES B.V.
    Inventors: Benjamin C. Moes, Matthew J. Norconk, Joshua B. Taylor, Colin J. Moore
  • Patent number: 10187042
    Abstract: A wireless power transfer component with a selectively adjustable resonator circuit having a Q control subcircuit that varies the Q factor of the resonator circuit to control the amount of power relayed by the resonator circuit. The resonator circuit may be in the wireless power supply, the wireless power receiver, an intermediate resonator or any combination thereof. The resonator circuit may be actively configured based on a feedback circuit. The feedback circuit may sense a characteristic in the secondary circuit or elsewhere and actively operate the control subcircuit based on the sensed characteristic. The feedback circuit may cause the Q control subcircuit to change (reduce or increase) the Q factor when the sensed characteristic crosses a threshold value. The Q control subcircuit may include a variable resistor having a value that can be varied to adjust the Q factor of the resonator circuit.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: January 22, 2019
    Assignee: PHILIPS IP VENTURES B.V.
    Inventors: David W. Baarman, Benjamin C. Moes, Joshua K. Schwannecke, Joshua B. Taylor, Neil W. Kuyvenhoven, Matthew J. Norconk, Colin J. Moore, John James Lord, Kristen J. Blood
  • Patent number: 10170935
    Abstract: An inductive power supply that maintains resonance and adjusts duty cycle based on feedback from a secondary circuit. A controller, driver circuit and switching circuit cooperate to generate an AC signal at a selected operating frequency and duty cycle. The AC signal is applied to the tank circuit to create an inductive field for powering the secondary. The secondary communicates feedback about the received power back to the primary controller. The power transfer efficiency may be optimized by maintaining the operating frequency substantially at resonance, and the amount of power transferred may be controlled by adjusting the duty cycle.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: January 1, 2019
    Assignee: PHILIPS IP VENTURES B.V.
    Inventors: David W. Baarman, Scott A. Mollema, Joshua K. Schwannecke, Thomas Jay Leppien, Kenneth Michael Burns
  • Patent number: 10164467
    Abstract: A wireless charging system is disclosed. The wireless charging system includes a detector configured to identify device information related to a device to be powered at a location, a location processor coupled with the detector and configured to deliver location-specific information related to the location to the device to be powered based on the detected device information, a power supply in communication with the location processor configured to wirelessly provide power to the device based on the detected device information, such that the location processor is configured to deliver the location specific information to the device via a first channel, and wherein the power supply is configured to wirelessly provide power to the device via a second channel.
    Type: Grant
    Filed: April 11, 2016
    Date of Patent: December 25, 2018
    Assignee: PHILIPS IP VENTURES B.V.
    Inventors: David W. Baarman, William T. Stoner, Jr.
  • Patent number: 10158255
    Abstract: An inductive power transfer system comprises a primary unit, having a primary coil and an electrical drive unit which applies electrical drive signals to the primary coil so as to generate an electromagnetic field. The system also comprises at least one secondary device, separable from the primary unit and having a secondary coil which couples with the field when the secondary device is in proximity to the primary unit. A control unit causes a circuit including said primary coil to operate, during a measurement period, in an undriven resonating condition. In this condition the application of the drive signals to the primary coil by the electrical drive unit is suspended so that energy stored in the circuit decays over the course of the period. A decay measurement unit takes one or more measures of such energy decay during the measurement period.
    Type: Grant
    Filed: December 6, 2016
    Date of Patent: December 18, 2018
    Assignee: Philips IP Ventures B.V.
    Inventors: Michael Craig Stevens, Alexander Charles Knill, John Robert Dunton
  • Patent number: 10110069
    Abstract: An inductive power supply system in which the receiving unit includes a secondary coil and a plurality of resonating circuits with different characteristics. Each of the resonating circuits may include a resonating coil and a resonating capacitor. The resonating coils may be inductively coupled to the secondary coil so that energy may be transferred from one or more of the resonating coils to said receiving unit. The plurality of resonating circuits are configured to provide improved power transfer efficiency or performance at different distances between the primary coil and secondary coil. The present invention may also provide a method for tuning the wireless power system including the general steps of measuring an operating characteristic in the primary unit, measuring an operating characteristic in the receiver unit and tuning one or more of the components in the primary unit and the secondary unit based on a comparison of the two measurements.
    Type: Grant
    Filed: May 5, 2015
    Date of Patent: October 23, 2018
    Assignee: PHILIPS IP VENTURES B.V.
    Inventor: David W. Baarman