Patents Assigned to PRINTED ENERGY PTY LTD
  • Patent number: 11962017
    Abstract: The disclosed technology generally relates to energy storage devices, and more particularly to energy storage devices comprising frustules. According to an aspect, a supercapacitor comprises a pair of electrodes and an electrolyte, wherein at least one of the electrodes comprises a plurality of frustules having formed thereon a surface active material. The surface active material can include nanostructures. The surface active material can include one or more of a zinc oxide, a manganese oxide and a carbon nanotube.
    Type: Grant
    Filed: January 25, 2023
    Date of Patent: April 16, 2024
    Assignee: Printed Energy Pty Ltd
    Inventors: Vera N. Lockett, Yasser Salah, John G. Gustafson, William J. Ray, Sri Harsha Kolli
  • Patent number: 11673811
    Abstract: A printed energy storage device includes a first electrode, a second electrode, and a separator between the first and the second electrode. At least one of the first electrode, the second electrode, and the separator includes frustules, for example of diatoms. The frustules may have a uniform or substantially uniform property or attribute such as shape, dimension, and/or porosity. A property or attribute of the frustules can also be modified by applying or forming a surface modifying structure and/or material to a surface of the frustules. A membrane for an energy storage device includes frustules. An ink for a printed film includes frustules.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: June 13, 2023
    Assignee: Printed Energy Pty Ltd
    Inventors: Vera N. Lockett, John G. Gustafson, Mark D. Lowenthal, William J. Ray
  • Patent number: 11637292
    Abstract: The disclosed technology generally relates to energy storage devices, and more particularly to energy storage devices comprising frustules. According to an aspect, a supercapacitor comprises a pair of electrodes and an electrolyte, wherein at least one of the electrodes comprises a plurality of frustules having formed thereon a surface active material. The surface active material can include nanostructures. The surface active material can include one or more of a zinc oxide, a manganese oxide and a carbon nanotube.
    Type: Grant
    Filed: July 12, 2021
    Date of Patent: April 25, 2023
    Assignee: Printed Energy Pty Ltd
    Inventors: Vera N. Lockett, Yasser Salah, John G. Gustafson, William J. Ray, Sri Harsha Kolli
  • Patent number: 11551879
    Abstract: Representative embodiments provide a liquid or gel separator utilized to separate and space apart first and second conductors or electrodes of an energy storage device, such as a battery or a supercapacitor. A representative liquid or gel separator comprises a plurality of particles, typically having a size (in any dimension) between about 0.5 to about 50 microns; a first, ionic liquid electrolyte; and a polymer. In another representative embodiment, the plurality of particles comprise diatoms, diatomaceous frustules, and/or diatomaceous fragments or remains. Another representative embodiment further comprises a second electrolyte different from the first electrolyte; the plurality of particles are comprised of silicate glass; the first and second electrolytes comprise zinc tetrafluoroborate salt in 1-ethyl-3-methylimidalzolium tetrafluoroborate ionic liquid; and the polymer comprises polyvinyl alcohol (“PVA”) or polyvinylidene fluoride (“PVFD”).
    Type: Grant
    Filed: February 1, 2020
    Date of Patent: January 10, 2023
    Assignee: Printed Energy Pty Ltd
    Inventors: Vera Nicholaevna Lockett, Mark David Lowenthal, Neil O. Shotton, William Johnstone Ray, Theodore I. Kamins
  • Patent number: 11502311
    Abstract: A printed energy storage device includes a first electrode including zinc, a second electrode including manganese dioxide, and a separator between the first electrode and the second electrode, the first electrode, second, electrode, and separator printed onto a substrate. The device may include a first current collector and/or a second current collector printed onto the substrate. The energy storage device may include a printed intermediate layer between the separator and the first electrode. The first electrode, and the second electrode may include 1-ethyl-3-methylimidazolium tetrafluoroborate (C2mimBF4). The first electrode and the second electrode may include an electrolyte having zinc tetrafluoroborate (ZnBF4) and 1-ethyl-3-methylimidazolium tetrafluoroborate (C2mimBF4). The first electrode, the second electrode, the first current collector, and/or the second current collector can include carbon nanotubes. The separator may include solid microspheres.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: November 15, 2022
    Assignee: PRINTED ENERGY Pty Ltd
    Inventors: Vera N. Lockett, John G. Gustafson, Alexandra E. Hartman, Mark D. Lowenthal, William J. Ray
  • Patent number: 11276885
    Abstract: The disclosed technology generally relates to thin film-based energy storage devices, and more particularly to printed thin film-based energy storage devices. The thin film-based energy storage device includes a first current collector layer and a second current collector layer over an electrically insulating substrate and adjacently disposed in a lateral direction. The thin film-based energy storage device additionally includes a first electrode layer of a first type over the first current collector layer and a second electrode layer of a second type over the second current collector layer. A separator separates the first electrode layer and the second electrode layer. One or more of the first current collector layer, the first electrode layer, the separator, the second electrode layer and the second current collector layer are printed layers.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: March 15, 2022
    Assignee: Printed Energy Pty Ltd
    Inventors: Vera N. Lockett, Yasser Salah, Alexandra Elyse Hartman, Sri Harsha Kolli, Rodger Whitby, William Johnstone Ray, Leila Daneshi
  • Patent number: 11066306
    Abstract: A printed energy storage device includes a first electrode, a second electrode, and a separator between the first and the second electrode. At least one of the first electrode, the second electrode, and the separator includes frustules, for example of diatoms. The frustules may have a uniform or substantially uniform property or attribute such as shape, dimension, and/or porosity. A property or attribute of the frustules can also be modified by applying or forming a surface modifying structure and/or material to a surface of the frustules. A membrane for an energy storage device includes frustules. An ink for a printed film includes frustules.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: July 20, 2021
    Assignee: Printed Energy Pty Ltd
    Inventors: Vera N. Lockett, John G. Gustafson, Mark D. Lowenthal, William J. Ray
  • Patent number: 11063265
    Abstract: The disclosed technology generally relates to energy storage devices, and more particularly to energy storage devices comprising frustules. According to an aspect, a supercapacitor comprises a pair of electrodes and an electrolyte, wherein at least one of the electrodes comprises a plurality of frustules having formed thereon a surface active material. The surface active material can include nanostructures. The surface active material can include one or more of a zinc oxide, a manganese oxide and a carbon nanotube.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: July 13, 2021
    Assignee: Printed Energy Pty Ltd
    Inventors: Vera N. Lockett, Yasser Salah, John G. Gustafson, William J. Ray, Sri Harsha Kolli
  • Patent number: 10961408
    Abstract: A conductive ink may include a nickel component, a polycarboxylic acid component, and a polyol component, the polycarboxylic acid component and the polyol component being reactable to form a polyester component. The polyester component may be formed in situ in the conductive ink from a polyol component and a polycarboxylic acid component. The conductive ink may include a carbon component. The conductive ink may include an additive component. The conductive ink may include nickel flakes, graphene flakes, glutaric acid, and ethylene glycol. The conductive ink may be printed (e.g., screen printed) on a substrate and cured to form a conductive film. A conductive film may include a nickel component and a polyester component.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: March 30, 2021
    Assignee: Printed Energy Pty Ltd
    Inventors: Vera N. Lockett, Alexandra E. Hartman, John G. Gustafson, Mark D. Lowenthal, William J. Ray
  • Patent number: 10910166
    Abstract: Representative embodiments provide a composition for printing a liquid or gel separator utilized to separate and space apart first and second conductors or electrodes of an energy storage device, such as a battery or a supercapacitor. A representative composition comprises a plurality of particles, typically having a size (in any dimension) between about 0.5 to about 50 microns; a first, ionic liquid electrolyte; and a polymer or polymeric precursor. In another representative embodiment, the plurality of particles comprise diatoms, diatomaceous frustules, and/or diatomaceous fragments or remains. Another representative embodiment further comprises a second electrolyte different from the first electrolyte; the plurality of particles are comprised of silicate glass; the first and second electrolytes comprise zinc tetrafluoroborate salt in 1-ethyl-3-methylimidalzolium tetrafluoroborate ionic liquid; and the polymer comprises polyvinyl alcohol (“PVA”) or polyvinylidene fluoride (“PVFD”).
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: February 2, 2021
    Assignee: Printed Energy Pty Ltd
    Inventors: Vera Nicholaevna Lockett, Mark David Lowenthal, Neil O. Shotton, William Johnstone Ray, Theodore I. Kamins
  • Patent number: 10770733
    Abstract: An energy storage device can include a cathode having a first plurality of frustules, where the first plurality of frustules can include nanostructures having an oxide of manganese. The energy storage device can include an anode comprising a second plurality of frustules, where the second plurality of frustules can include nanostructures having zinc oxide. A frustule can have a plurality of nanostructures on at least one surface, where the plurality of nanostructures can include an oxide of manganese. A frustule can have a plurality of nanostructures on at least one surface, where the plurality of nanostructures can include zinc oxide. An electrode for an energy storage device includes a plurality of frustules, where each of the plurality of frustules can have a plurality of nanostructures formed on at least one surface.
    Type: Grant
    Filed: October 19, 2018
    Date of Patent: September 8, 2020
    Assignee: Printed Energy Pty Ltd
    Inventors: Vera N. Lockett, John G. Gustafson, William J. Ray, Yasser Salah
  • Patent number: 10686197
    Abstract: An energy storage device includes a printed current collector layer, where the printed current collector layer includes nickel flakes and a current collector conductive carbon additive. The energy storage device includes a printed electrode layer printed over the current collector layer, where the printed electrode layer includes an ionic liquid and an electrode conductive carbon additive. The ionic liquid can include 1-ethyl-3-methylimidazolium tetrafluoroborate (C2mimBF4). The current collector conductive carbon can include graphene and the electrode conductive carbon additive can include graphite, graphene, and/or carbon nanotubes.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: June 16, 2020
    Assignee: Printed Energy Pty Ltd
    Inventors: Vera N. Lockett, Leila Daneshi, William J. Ray, John G. Gustafson
  • Patent number: 10673077
    Abstract: An energy storage device, such as a silver oxide battery, can include a silver-containing cathode and an electrolyte having an ionic liquid. An anion of the ionic liquid is selected from the group consisting of: methanesulfonate, methylsulfate, acetate, and fluoroacetate. A cation of the ionic liquid can be selected from the group consisting of: imidazolium, pyridinium, ammonium, piperidinium, pyrrolidinium, sulfonium, and phosphonium. The energy storage device may include a printed or non-printed separator. The printed separator can include a gel including dissolved cellulose powder and the electrolyte. The non-printed separator can include a gel including at least partially dissolved regenerate cellulose and the electrolyte. An energy storage device fabrication process can include applying a plasma treatment to a surface of each of a cathode, anode, separator, and current collectors. The plasma treatment process can improve wettability, adhesion, electron and/or ionic transport across the treated surface.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: June 2, 2020
    Assignee: Printed Energy Pty Ltd
    Inventors: Vera N. Lockett, John G. Gustafson, William Johnstone Ray, Yasser Salah
  • Patent number: 10658679
    Abstract: A printed energy storage device includes a first electrode including zinc, a second electrode including manganese dioxide, and a separator between the first electrode and the second electrode, the first electrode, second, electrode, and separator printed onto a substrate. The device may include a first current collector and/or a second current collector printed onto the substrate. The energy storage device may include a printed intermediate layer between the separator and the first electrode. The first electrode, and the second electrode may include 1-ethyl-3-methylimidazolium tetrafluoroborate (C2mimBF4). The first electrode and the second electrode may include an electrolyte having zinc tetrafluoroborate (ZnBF4) and 1-ethyl-3-methylimidazolium tetrafluoroborate (C2mimBF4). The first electrode, the second electrode, the first current collector, and/or the second current collector can include carbon nanotubes. The separator may include solid microspheres.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: May 19, 2020
    Assignee: Printed Energy Pty Ltd
    Inventors: Vera N. Lockett, John G. Gustafson, Alexandra E. Hartman, Mark D. Lowenthal, William J. Ray
  • Patent number: 10573468
    Abstract: Representative embodiments provide a liquid or gel separator utilized to separate and space apart first and second conductors or electrodes of an energy storage device, such as a battery or a supercapacitor. A representative liquid or gel separator comprises a plurality of particles, typically having a size (in any dimension) between about 0.5 to about 50 microns; a first, ionic liquid electrolyte; and a polymer. In another representative embodiment, the plurality of particles comprise diatoms, diatomaceous frustules, and/or diatomaceous fragments or remains. Another representative embodiment further comprises a second electrolyte different from the first electrolyte; the plurality of particles are comprised of silicate glass; the first and second electrolytes comprise zinc tetrafluoroborate salt in 1-ethyl-3-methylimidalzolium tetrafluoroborate ionic liquid; and the polymer comprises polyvinyl alcohol (“PVA”) or polyvinylidene fluoride (“PVFD”).
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: February 25, 2020
    Assignee: Printed Energy Pty Ltd
    Inventors: Vera Nicholaevna Lockett, Mark David Lowenthal, Neil O. Shotton, William Johnstone Ray, Theodore I. Kamins
  • Patent number: 10396365
    Abstract: The disclosed technology generally relates to energy storage devices, and more particularly to energy storage devices comprising frustules. According to an aspect, a supercapacitor comprises a pair of electrodes and an electrolyte, wherein at least one of the electrodes comprises a plurality of frustules having formed thereon a surface active material. The surface active material can include nanostructures. The surface active material can include one or more of a zinc oxide, a manganese oxide and a carbon nanotube.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: August 27, 2019
    Assignee: Printed Energy Pty Ltd
    Inventors: Vera N. Lockett, Yasser Salah, John G. Gustafson, William J. Ray, Sri Harsha Kolli
  • Patent number: 10329444
    Abstract: A conductive ink may include a nickel component, a polycarboxylic acid component, and a polyol component, the polycarboxylic acid component and the polyol component being reactable to form a polyester component. The polyester component may be formed in situ in the conductive ink from a polyol component and a polycarboxylic acid component. The conductive ink may include a carbon component. The conductive ink may include an additive component. The conductive ink may include nickel flakes, graphene flakes, glutaric acid, and ethylene glycol. The conductive ink may be printed (e.g., screen printed) on a substrate and cured to form a conductive film. A conductive film may include a nickel component and a polyester component.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: June 25, 2019
    Assignee: Printed Energy Pty Ltd
    Inventors: Vera N. Lockett, Alexandra E. Hartman, John G. Gustafson, Mark D. Lowenthal, William J. Ray
  • Patent number: 10221071
    Abstract: A printed energy storage device includes a first electrode, a second electrode, and a separator between the first and the second electrode. At least one of the first electrode, the second electrode, and the separator includes frustules, for example of diatoms. The frustules may have a uniform or substantially uniform property or attribute such as shape, dimension, and/or porosity. A property or attribute of the frustules can also be modified by applying or forming a surface modifying structure and/or material to a surface of the frustules. A membrane for an energy storage device includes frustules. An ink for a printed film includes frustules.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: March 5, 2019
    Assignee: Printed Energy Pty Ltd
    Inventors: Vera N. Lockett, John G. Gustafson, Mark D. Lowenthal, William J. Ray
  • Patent number: 10121608
    Abstract: Representative embodiments provide a liquid or gel separator utilized to separate and space apart first and second conductors or electrodes of an energy storage device, such as a battery or a supercapacitor. A representative liquid or gel separator comprises a plurality of particles, typically having a size (in any dimension) between about 0.5 to about 50 microns; a first, ionic liquid electrolyte; and a polymer. In another representative embodiment, the plurality of particles comprise diatoms, diatomaceous frustules, and/or diatomaceous fragments or remains. Another representative embodiment further comprises a second electrolyte different from the first electrolyte; the plurality of particles are comprised of silicate glass; the first and second electrolytes comprise zinc tetrafluoroborate salt in 1-ethyl-3-methylimidalzolium tetrafluoroborate ionic liquid; and the polymer comprises polyvinyl alcohol (“PVA”) or polyvinylidene fluoride (“PVFD”).
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: November 6, 2018
    Assignee: Printed Energy Pty Ltd
    Inventors: Vera Nicholaevna Lockett, Mark David Lowenthal, Neil O. Shotton, William Johnstone Ray, Theodore I. Kamins
  • Patent number: 10109864
    Abstract: An energy storage device can include a cathode having a first plurality of frustules, where the first plurality of frustules can include nanostructures having an oxide of manganese. The energy storage device can include an anode comprising a second plurality of frustules, where the second plurality of frustules can include nanostructures having zinc oxide. A frustule can have a plurality of nanostructures on at least one surface, where the plurality of nanostructures can include an oxide of manganese. A frustule can have a plurality of nanostructures on at least one surface, where the plurality of nanostructures can include zinc oxide. An electrode for an energy storage device includes a plurality of frustules, where each of the plurality of frustules can have a plurality of nanostructures formed on at least one surface.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: October 23, 2018
    Assignee: Printed Energy Pty Ltd
    Inventors: Vera N. Lockett, John G. Gustafson, William J. Ray, Yasser Salah