Patents Assigned to Pruftechnik Dieter Busch AG
  • Patent number: 9091717
    Abstract: A method for nondestructive and noncontact detection of faults in a test piece, with a transmitter coil arrangement with at least one transmitter coil, a receiver coil arrangement with at least one receiver coil for detecting a periodic signal which has a carrier oscillation whose amplitude and/or phase is modulated by a fault in the test piece. A signal processing unit producing a useful signal receiver coil signal, and an evaluation unit evaluating the useful signal for detection of a fault in the test piece. A self-test unit automatically or upon an external request undertakes systematic quantitative checking of signal processing functions of the signal processing unit and/or systematic quantitative checking of the transmitter coil arrangement and/or of the receiver coil arrangement and/or upon external request undertakes calibration of the signal processing unit using a calibration standard which replaces the transmitter coil arrangement and/or of the receiver coil arrangement.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: July 28, 2015
    Assignee: Prüftechnik Dieter Busch AG
    Inventor: Roland Hölzl
  • Patent number: 9086385
    Abstract: A method and device for nondestructive and noncontact detection of faults in a test piece, or electrically conductive particles in a liquid flow, moving passed the device, using eddy currents. The test piece or flow is exposed to periodic alternating electromagnetic fields. A periodic electrical signal is detected. The receiver coil signal is digitized with an A/D converter stage. A useful signal is produced from the digitized receiver coil signal with a signal processing unit, and the useful signal is evaluated with an evaluation unit for detecting a fault in the test piece or electrically conductive particles. When overdriving of the A/D converter stage by the receiver coil signal is ascertained by monitoring the curve shape of the digitized receiver coil signal, a part of the receiver coil signal truncated by the A/D converter stage is reconstructed using a mathematical approximation in the digitized receiver coil signal.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: July 21, 2015
    Assignee: Prüftechnik Dieter Busch AG
    Inventor: Roland Hölzl
  • Publication number: 20140327762
    Abstract: The invention relates to a device for determining the location of a first mechanical element (10, 156) and a second mechanical element (12, 154) with respect to each other, with a first measurement unit (14, 114, 214) for positioning at the first mechanical element, a second measurement unit (18, 118, 218) for positioning at the second mechanical element, and an analysis unit (22), wherein the first measurement unit has means (24, 124, 224) for producing a light beam bundle (28, 128, 228), wherein the second measurement unit has a scattering surface (34, 134, 234) for scattering of the light impinging on the scattering surface, a camera (36), and means for imaging the scattering surface on the camera, wherein the scattering surface faces the first measurement unit when the measurement units are positioned at the respective mechanical element so as to be impinged on by the light beam bundle.
    Type: Application
    Filed: April 21, 2014
    Publication date: November 6, 2014
    Applicant: Pruftechnik Dieter Busch AG
    Inventor: Roland Holzl
  • Publication number: 20140327761
    Abstract: The invention relates to a device for determining the location of a first mechanical element (10) and a second mechanical element (12) with respect to each other, having a first measurement unit (14) for positioning at the first mechanical element, a second measurement unit (18) for positioning at the second mechanical element, and an analysis unit (22), wherein the first measurement unit has means (24) for producing at least one light beam bundle (28, 30), a scattering surface (34) for scattering the light (WV, PV) impinging on the scattering surface, and a camera (36) for recording images of the scattering surface, wherein the second measurement unit has a reflector arrangement (38), which faces the first measurement unit when the measurement units are positioned at the respective mechanical element so as to reflect the light beam bundle (28?, 28?) onto the scattering surface.
    Type: Application
    Filed: April 21, 2014
    Publication date: November 6, 2014
    Applicant: Pruftechnik Dieter Busch AG
    Inventor: Roland Holzl
  • Patent number: 8841902
    Abstract: A test set-up (10) for non-destructive detection of a flaw in a device being tested by means of an eddy current has an excitation coil (14), to which an excitation signal (SE) can be sent to act on the device being tested (16) with an electromagnetic alternating field, a receiving coil (17) to generate a coil signal (SP), which is a function of the flaw in the device being tested (16), an analog-digital converter (21), which is coupled to the receiving coil (17) on the input side, a filter arrangement (22), which is coupled to the analog-digital converter (21) on the input side and is designed for band-pass filtering and scan rate reduction, and a demodulator (27), which is coupled to an output of the filter arrangement (22) on the input side.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: September 23, 2014
    Assignee: Prüftechnik Dieter Busch AG
    Inventors: Heinrich Lysen, Werner Bräu
  • Patent number: 8820149
    Abstract: Method for spectral evaluation of oscillation signals which have been obtained on a rotor blade of a wind power installation with an accelerations sensor. In doing so, instead of the otherwise conventional Fourier transform calculation, the spectral power density is computed. In the evaluation, also signal portions are considered which are not detected in the Fourier transform because they do not go back to oscillations which have been excited in the rotor blade.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: September 2, 2014
    Assignee: Prüftechnik Dieter Busch AG
    Inventor: Edwin Becker
  • Publication number: 20140139823
    Abstract: The invention relates to a device for determining the position of a first shaft (10) and of a second shaft (12) that is joined to the first shaft by means of a coupling (14), with respect to each other, having a first measurement unit being placed on a circumferential surface of the first shaft and a second measurement unit being placed on a circumferential surface of the second shaft, wherein at least one of the two measurement units has means (20) for producing at least one light beam bundle (22) and at least one of the two measurement units has detection means (24, 25, 26) in order to detect the impingement position of the light beam bundle on at least one detection area (24, 25, 26).
    Type: Application
    Filed: November 14, 2013
    Publication date: May 22, 2014
    Applicant: Pruftechnik Dieter Busch AG
    Inventors: Gianluca Canu, Bernhard Glaser, Volker Konetschny, Martin Wegener
  • Publication number: 20140096611
    Abstract: A sensor arrangement (10) has a vibration sensor (11), which includes a cable (13) and is free of a metal housing, and a holding device (12), which is joined detachably to the vibration sensor (11) and is configured and arranged to protect mechanically and fix in place the vibration sensor (11).
    Type: Application
    Filed: October 7, 2013
    Publication date: April 10, 2014
    Applicant: Pruftechnik Dieter Busch AG
    Inventor: Heinrich Lysen
  • Publication number: 20140096627
    Abstract: A sensor arrangement (10) includes a sensor (11) for a mechanical quantity or a thermal quantity, a processing circuit (12), which is connected at the input end to the sensor (11) and provides an output signal (SRF), which is processed for wireless transmission, and a cable (13), which is coupled to the processing circuit (12), to which the output signal (SRF) or a signal derived from the output signal (SRF) is supplied and which delivers a power supply to the processing circuit.
    Type: Application
    Filed: October 7, 2013
    Publication date: April 10, 2014
    Applicant: Pruftechnik Dieter Busch AG
    Inventor: Heinrich Lysen
  • Publication number: 20140090472
    Abstract: A device for the evaluation of vibrations (10) comprises an evaluating device (12), which comprises an input for introducing a vibration signal (SG) and is designed to determine a characteristic signal (BK) with the dimension of length/time? and/or the square (SE) of the characteristic signal (BK) from the vibration signal (SG) by means of a frequency-dependent evaluation of the vibration signal (SG). For a predefined value of a dimensional exponent ?, 1.3<?<1.7, a vibration sensor (11) of the device (10) outputs the vibration signal (SG). An RMS value (BEF) of the characteristic signal (BK) or the square (SE) of the characteristic signal (BK) essentially corresponds to the damaging effect of the vibrations on a structure or a machine. The square (SE) can be converted into a service life (T) according to the equation T=KB/SE and displayed.
    Type: Application
    Filed: August 21, 2013
    Publication date: April 3, 2014
    Applicant: Pruftechnik Dieter Busch AG
    Inventor: Heinrich Lysen
  • Patent number: 8672625
    Abstract: A vibration-resistant wind turbine and process for operation is provided. The wind turbine has a rotor with at least two blades, each of which includes an inclinometer arrangement with at least two axes, and an evaluating unit. The evaluating unit determines the bending and/or twisting of the blade relative to the longitudinal axis of the blade on the basis of signals from the inclinometer arrangement for each blade during operation. Each rotor blade further has at least one liquid tank which is capable of receiving or transferring liquid from or to a liquid reservoir via a transfer mechanism in response to the determined bending and/or twisting of the rotor blades to reduce vibration caused by imbalances, thereby extending the service life of the wind turbine.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: March 18, 2014
    Assignee: Prüftechnik Dieter Busch AG
    Inventors: Edwin Becker, Marcel Kenzler, Johann Loesl
  • Publication number: 20140074412
    Abstract: Method for determining a characteristic for the quality of alignment of a rotating machine, by obtaining vibration data with at least one vibration sensor, and using the vibration data obtained with the vibration sensor to determine a characteristic for the quality of alignment. Furthermore, alignment data obtained from first and second optoelectronic units is used in addition to the vibration data obtained with the at least one vibration sensor to produce a combination value from which both an instantaneous vibration state and success of the alignment can be determined.
    Type: Application
    Filed: November 14, 2013
    Publication date: March 13, 2014
    Applicant: Pruftechnik Dieter Busch AG
    Inventors: Dieter Busch, Heinrich Lysen
  • Patent number: 8607635
    Abstract: An alignment device with one or two optoelectronic transmitting and/or receiving units and an evaluation unit. At least one optoelectronic transmitting and/or receiving unit contains an inclinometer. Furthermore, the transmitting and/or receiving unit is connected to a vibration sensor which can be the inclinometer. Both the result of the alignment process and also the result of the vibration measurement are communicated to the user as an easily understandable characteristic on a display of the evaluation unit. For vibration measurement at a non-rotating part of a machine, an accelerometer/inclinometer sensor may be used for measuring acceleration forces resulting from machine vibrations to be measured and for measuring gravity and an electronic evaluation unit determining the orientation of the sensor with regard to gravity from a stationary component of the sensor output and determining sensor orientation from evaluation of non-stationary components of sensor output.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: December 17, 2013
    Assignee: Pruftechnik Dieter Busch AG
    Inventors: Dieter Busch, Heinrich Lysen
  • Patent number: 8578772
    Abstract: A rotating machine element is monitored for displacements using co-rotating sensors for acceleration, rotation or the direction of gravitation. In doing so, the sensor data are received by a, likewise, co-rotating electronic unit. The data can also be stored and further processed in this electronic unit.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: November 12, 2013
    Assignee: Pruftechnik Dieter Busch AG
    Inventors: Edwin Becker, Dieter Busch, Johann Loesl, Heinrich Lysen
  • Patent number: 8571826
    Abstract: A method for correction of the measured values of optical alignment systems with at least two measurement planes which are located in succession in the beam path. From each measurement plane, the beam path to the light source is transformed back in order to compute new incidence points using a beam which has been corrected by taking into consideration imaging errors.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: October 29, 2013
    Assignee: Prüftechnik Dieter Busch AG
    Inventor: Heinrich Lysen
  • Publication number: 20130276541
    Abstract: A compact vibration meter has at least two vibration sensors which sense vibrations at regions of a support element, the detected vibrations being adjusted to the frequency range to be sensed by the respective sensor.
    Type: Application
    Filed: December 30, 2011
    Publication date: October 24, 2013
    Applicant: Pruftechnik Dieter Busch AG
    Inventors: Dieter Busch, Alexander Kuchler, Heinrich Lysen
  • Publication number: 20130187643
    Abstract: A test set-up (10) for non-destructive detection of a flaw in a device being tested by means of an eddy current has an excitation coil (14), to which an excitation signal (SE) can be sent to act on the device being tested (16) with an electromagnetic alternating field, a receiving coil (17) to generate a coil signal (SP), which is a function of the flaw in the device being tested (16), an analog-digital converter (21), which is coupled to the receiving coil (17) on the input side, a filter arrangement (22), which is coupled to the analog-digital converter (21) on the input side and is designed for band-pass filtering and scan rate reduction, and a demodulator (27), which is coupled to an output of the filter arrangement (22) on the input side.
    Type: Application
    Filed: July 13, 2012
    Publication date: July 25, 2013
    Applicant: Prüftechnik Dieter Busch AG
    Inventors: Heinrich LYSEN, Werner BRÄU
  • Publication number: 20130169799
    Abstract: Computer-based detection of damage on machine components, such as misalignments and mechanical damage on bearings and clutches, is achieved using mathematical linkage of the temperatures of selected regions of thermography pictures. Photographs from the visible spectral range can be consulted in the computed-based detection.
    Type: Application
    Filed: July 12, 2011
    Publication date: July 4, 2013
    Applicant: PRUFTECHNIK DIETER BUSCH AG
    Inventor: Roland Hoelzl
  • Patent number: 8421471
    Abstract: Method for nondestructive and noncontact detection of faults in a test piece, with a transmitter coil arrangement with at least one transmitter coil that transmits periodic electromagnetical AC fields to a test piece, a receiver coil arrangement with at least one receiver coil for detecting a periodic electrical signal having a carrier oscillation whose amplitude and/or phase is modulated by a fault in the test piece. A signal processing unit produces a useful signal from the receiver coil signal, and an evaluation unit evaluates the useful signal to detect a fault in the test piece. A self-test unit undertakes systematic quantitative checking of signal processing functions of the signal processing unit and/or of the transmitter coil arrangement and/or of the receiver coil arrangement and/or upon external request undertakes calibration of the signal processing unit using a calibration standard which replaces the transmitter coil arrangement and/or of the receiver coil arrangement.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: April 16, 2013
    Assignee: Prüftechnik Dieter Busch AG
    Inventor: Roland Hölzl
  • Publication number: 20130042682
    Abstract: A device for detecting vibrations on a machine (12) with at least one machine element (11) which rotates around an axis of rotation, with a measurement head (1) for detachable coupling to at least one measuring point (13, 61, 62, 63) of the machine, with a sensor arrangement (2) for measuring vibrations in at least one sensor measurement direction which is fixed with respect to the measurement head, and an arrangement (42, 43, 44, 45) for detecting the current three-dimensional orientation of the sensor measurement direction, with at least one gyroscope (42, 43, 44), and an arrangement (46) for assignment of vibration measurement and the corresponding orientation of the sensor measurement direction during the respective vibration measurement.
    Type: Application
    Filed: August 16, 2012
    Publication date: February 21, 2013
    Applicant: PRÜFTECHNIK DIETER BUSCH AG
    Inventors: Dieter BUSCH, Alexander KUCHLER, Karl KRACH