Abstract: This invention provides new, highly conductive materials comprising crystallized electron pairs within an insulating matrix. Crystallized electron pairs can combine with each other to form quasi-one-dimensional structures, quantum nanowires, that have nanoscale diameters and microscale lengths or longer. Quantum nanowires can also be formed as closed loops. Quantum nanowires comprising crystallized electron pairs exhibit very high electrical conductivity over a range of temperatures from 0 Kelvins up to the decomposition temperature of the materials. The quantum nanowires of this invention can be used in a variety of electronic, opto-electronic, electro-optical, motive, sensing and other ways to provide nanoscale structures for manufacturing small devices having low power requirements, low energy dissipation and very rapid responses.
Abstract: Quantum nanowires are produced in a medium comprising ions, dopants and free electrons, wherein the free electrons are solvated by complexes of ions and dopants. Electrical conductivity of the quantum nanowires can be higher than for conventional metal conductors. Quantum nanowires can be prepared in linear or circular form, and can be used to manufacture electrical components including transistors, sensors, motors and other nanoscale passive or active devices. Nanoscale devices can be made in liquid, semisolid, or solid media. Methods are provided for the manufacture of quantum nanowires and devices made therefrom. The devices can be used in the manufacture of computers, electronic circuits, biological implants and other products.