Patents Assigned to Research Corporation
  • Patent number: 11925934
    Abstract: Microfluidic devices for cell sorting or cell fractionation are disclosed. A microfluidic device can comprise one or more inlets, a first wall and a second wall, and two or more outlets. The first and second walls can be substantially planar to each other and the first wall having can have a plurality of ridges protruding from the first wall and defining a compression gap between the ridge and a surface of the second wall. The microfluidic device can also be a cell sorting device for sorting a plurality of cells based on one or more biophysical cellular properties including size, elasticity, viscosity, and/or viscoelasticity wherein the cells are subjected to one or more compressions due to the compression gap. Also disclosed are methods for cell sorting based on a variety of biophysical cellular properties.
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: March 12, 2024
    Assignee: Georgia Tech Research Corporation
    Inventors: Todd Sulchek, Alexander Alexeev, Gonghao Wang
  • Patent number: 11926411
    Abstract: A leg mechanism includes an articulated leg system, a passive device and a cable. The articulated leg system has a leg portion. The passive device is coupled to the articulated leg system and is configured to apply a first force to a portion thereof. The cable is coupled to the articulated leg system and is configured to apply a second force, in opposition to the first force, to a portion thereof. When the cable is drawn away from the articulated leg system, the second force moves the leg portion in a first direction. When tension is released from the cable, the passive device exerts the first force so as to move the leg portion a second direction that is opposite the first direction.
    Type: Grant
    Filed: August 29, 2022
    Date of Patent: March 12, 2024
    Assignee: Georgia Tech Research Corporation
    Inventors: Claudio V. Di Leo, Mark F. Costello, Benjamin Leon, Julian Jose Rimoli, Michael B. Ward
  • Patent number: 11920239
    Abstract: Certain embodiments herein relate to an apparatus used for remote plasma processing. In various embodiments, the apparatus includes a reaction chamber that is conditioned by forming a low recombination material coating on interior chamber surfaces. The low recombination material helps minimize the degree of radical recombination that occurs when the reaction chamber is used to process substrates. During processing on substrates, the low recombination material may become covered by relatively higher recombination material (e.g., as a byproduct of the substrate processing), which results in a decrease in the amount of radicals available to process the substrate over time. The low recombination material coating may be reconditioned through exposure to an oxidizing plasma, which acts to reform the low recombination material coating. The reconditioning process may occur periodically as additional processing occurs on substrates.
    Type: Grant
    Filed: January 26, 2022
    Date of Patent: March 5, 2024
    Assignee: Lam Research Corporation
    Inventors: Bhadri N. Varadarajan, Bo Gong, Rachel E. Batzer, Huatan Qiu, Bart J. Van Schravendijk, Geoffrey Hohn
  • Patent number: 11921433
    Abstract: A metrology system may include an optical metrology tool configured to produce an optical metrology output for one or more features on a processed substrate, and a metrology machine learning model that has been trained using a training set of (i) profiles, critical dimensions, and/or contours for a plurality of features, and (ii) optical metrology outputs for the plurality of features. The metrology machine learning model may be configured to: receive the optical metrology output from the optical metrology tool; and output the profile, critical dimension, and/or contour of the one or more features on the processed substrate.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: March 5, 2024
    Assignee: Lam Research Corporation
    Inventors: Ye Feng, Yan Zhang, Osman Sorkhabi
  • Patent number: 11923404
    Abstract: A method of forming ferroelectric hafnium oxide (HfO2) in a substrate processing system includes depositing an HfO2 layer on a substrate, depositing a hafnium nitride (HfN) layer on the HfO2 layer; and annealing the HfO2 layer and the HfN layer to form ferroelectric hafnium HfO2.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: March 5, 2024
    Assignee: Lam Research Corporation
    Inventors: Hyungsuk Alexander Yoon, Zhongwei Zhu
  • Patent number: 11923189
    Abstract: A method of forming ferroelectric hafnium oxide (HfO2) in a substrate processing system includes depositing an HfO2 layer on a substrate, depositing a capping layer on the HfO2 layer, annealing the HfO2 layer and the capping layer to form ferroelectric hafnium HfO2, and selectively etching the capping layer to remove the capping layer without removing the HfO2 layer.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: March 5, 2024
    Assignee: Lam Research Corporation
    Inventors: Hyungsuk Alexander Yoon, Zhongwei Zhu
  • Patent number: 11920708
    Abstract: A sealing interface includes a first tube having an end with a convex surface and a second tube having an end with a convex surface. A spacer is disposed between the respective ends of the first and second tubes. One side of the spacer has a concave surface that substantially matches the convex surface of the end of the first tube, and another side of the spacer has a concave surface that substantially matches the convex surface of the end of the second tube. The spacer includes a through hole in fluid communication with a fluid passageway of the first tube and a fluid passageway of the second tube. Tying elements are respectively coupled to the first tube and the second tube, with the tying elements applying a compressive force between the first tube and the spacer, and applying a compressive force between the second tube and the spacer.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: March 5, 2024
    Assignee: Lam Research Corporation
    Inventor: Tyler Green
  • Patent number: 11923050
    Abstract: Method and system are provided for efficiently populating a phase diagram for modeling of multiple substances. The method may include defining an n-way phase diagram with data points each being an n-tuple describing the n substance inputs, wherein the n-way phase diagram is defined at a user-configured resolution. The method may select an initial subset of data points and calculate their contribution to the phase diagram. The method may then generate a Bayesian model based on the initial subset of calculated data points and predicting the resultant phase and an associated uncertainty of all the uncalculated data points in the defined phase diagram. The method may select a sample subset of the data points using maximum entropy sampling and calculating a resultant phase for each of the selected data points, and incorporate the calculated phases into the Bayesian model.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: March 5, 2024
    Assignees: United Kingdom Research and Innovation, International Business Machines Corporation
    Inventors: Edward Pyzer-Knapp, Richard Anderson
  • Patent number: 11921427
    Abstract: Imaging layers on the surface of a substrate may be patterned using next generation lithographic techniques, and the resulting patterned film may be used as a lithographic mask, for example, for production of a semiconductor device.
    Type: Grant
    Filed: November 11, 2019
    Date of Patent: March 5, 2024
    Assignee: Lam Research Corporation
    Inventors: Timothy William Weidman, Katie Nardi, Chenghao Wu
  • Patent number: 11913113
    Abstract: A method for processing a substrate is provided, wherein the substrate is located below a showerhead in a processing chamber. A deposition layer is deposited on the substrate, wherein at least one deposition gas is provided through the showerhead. A secondary purge gas is flowed during the depositing the deposition layer from a location outside of the showerhead in the processing chamber forming a flow curtain around an outer edge of the showerhead, wherein the secondary purge gas comprises at least one component gas. A partial pressure of the at least one component gas is changed over time during the depositing the deposition layer, wherein the depositing the deposition layer has a non-uniformity, wherein the changing the partial pressure changes the non-uniformity over time during the depositing the deposition layer.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: February 27, 2024
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Pulkit Agarwal, Adrien Lavoie, Purushottam Kumar
  • Patent number: 11915912
    Abstract: Systems and methods for increasing peak ion energy with a low angular spread of ions are described. In one of the systems, multiple radio frequency (RF) generators that are coupled to an upper electrode associated with a plasma chamber are operated in two different states, such as two different frequency levels, for pulsing of the RF generators. The pulsing of the RF generators facilitates a transfer of ion energy during one of the states to another one of the states for increasing ion energy during the other state to further increase a rate of processing a substrate.
    Type: Grant
    Filed: December 20, 2022
    Date of Patent: February 27, 2024
    Assignee: Lam Research Corporation
    Inventors: Juline Shoeb, Ying Wu, Alex Paterson
  • Patent number: 11911182
    Abstract: As an IV infiltration occurs and fluid leaks into surrounding tissues, several physiological changes are expected locally. The systems and methods described herein provide a scalable automated IV infiltration detection device to provide medical staff an early warning of a possible infiltration such that they can respond accordingly. The systems and methods capture the physiological state of the user at or around a peripheral catheter insertion site by incorporating one or more modalities of wearable sensing, processing the data collected from these wearable sensors, detecting the presence of extravascular fluid, and providing an indication to a medical professional.
    Type: Grant
    Filed: October 20, 2021
    Date of Patent: February 27, 2024
    Assignees: Georgia Tech Research Corporation, Children's Healthcare of Atlanta, Inc., Emory University
    Inventors: Omer Inan, Jambu Jambulingam, Kevin Maher, Russell Scott McCrory, Leanne West, Sinan Hersek, Samer Mabrouk
  • Patent number: 11912657
    Abstract: A low sulfur diesel blockage inhibitor as shown in formula (I), a preparation method therefor, and use thereof are provided. In formula (I), x and y are each an integer between 0 and 4; m and n are each selected from H, a C1-C6 linear or branched alkyl group, or a C3-C6 cycloalkyl group. By using a vegetable oil as a raw material, a modified vegetable oil fatty acid is first obtained, and then a polar group of an unsaturated dialdehyde with a certain chain length is introduced into a molecular chain of the modified vegetable oil fatty acid.
    Type: Grant
    Filed: December 31, 2019
    Date of Patent: February 27, 2024
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, SINOPEC DALIAN RESEARCH INSTITUTE OF PETROLEUM AND PETROCHEMICALS CO., LTD.
    Inventors: Lanpeng Li, Changhai Cao, Jin Cheng, Xiuzheng Li, Yidi Wang
  • Patent number: 11913886
    Abstract: This disclosure describes an example architecture for providing a delay line for optical techniques. The delay line architecture includes a focusing element that has a focal axis disposed parallel to its length. The line of symmetry provided by the focal axis obviates path-length-dependent aberrations caused by the off-axis beam translations. The systems described herein also provide varying geometries of movable mirrors, including a galvanometer mirror and a rotating polygonal mirror. The systems and methods described herein also provide techniques for generating and detecting coherent Raman spectra using a picosecond probe pulse.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: February 27, 2024
    Assignee: Georgia Tech Research Corporation
    Inventors: Marcus Cicerone, Xavier Audier
  • Patent number: 11915923
    Abstract: A plasma processing system is provided. The system includes a hydrogen gas supply and a hydrocarbon gas supply and a processing chamber. The system includes a first mass flow controller (MFC) for controlling hydrogen gas flow into the processing chamber and a second MFC for controlling hydrocarbon gas flow into the processing chamber. The system includes a plasma source for generating plasma at the processing chamber. The plasma is for etching SnO2. The system includes a controller for regulating the first MFC and the second MFC such that a ratio of hydrocarbon gas flow to the hydrogen gas flow into the processing chamber is between 1% and 60% so that when SnH4 is produced during said etching SnO2. The SnH4 is configured to react with hydrocarbon gas to produce an organotin compound that is volatilizable in a reaction that is more kinetically favorable than SnH4 decomposition into Sn powder.
    Type: Grant
    Filed: November 5, 2020
    Date of Patent: February 27, 2024
    Assignee: Lam Research Corporation
    Inventors: Akhil Singhal, Dustin Zachary Austin, Jeongseok Ha, Pei-Chi Liu
  • Patent number: 11912575
    Abstract: The present disclosure provides compositions including method of producing H2, variable volume reactors, methods of using variable volume reactors, and the like.
    Type: Grant
    Filed: March 9, 2021
    Date of Patent: February 27, 2024
    Assignee: Georgia Tech Research Corporation
    Inventors: Andrei G. Fedorov, David M. Anderson
  • Patent number: 11908714
    Abstract: A transfer robot assembly arranged within an ATV transfer module includes a transfer robot that includes an end effector and one or more arm segments connected between the end effector and a transfer robot platform. A first robot alignment arm is connected to the transfer robot platform. A second robot alignment arm is connected to the first robot alignment arm and to a mounting chassis of the ATV transfer module. The transfer robot assembly is configured to actuate the first robot alignment arm and the second robot alignment arm to raise and lower the transfer robot to adjust a position of the transfer robot in a vertical direction and in a horizontal direction. The transfer robot is configured to fold into a folded configuration having a narrow profile occupying less than 50% of an overall depth of the ATV transfer module.
    Type: Grant
    Filed: November 7, 2022
    Date of Patent: February 20, 2024
    Assignee: Lam Research Corporation
    Inventors: Richard H. Gould, Richard Blank
  • Patent number: 11909085
    Abstract: Disclosed are air electrode materials suitable for use in solid oxide electrochemical cells (SOCs). The disclosed cells can operate in a dual function modes, i.e., as a fuel cell and as an electrolysis cell. In both cases, chemical energy and electrical energy can be directly convert from one mode to the other; thereby providing a highly efficient energy conversion process that can be used as a sustainable energy source.
    Type: Grant
    Filed: September 15, 2021
    Date of Patent: February 20, 2024
    Assignees: Phillips 66 Company, Georgia Tech Research Corporation
    Inventors: Weilin Zhang, Meilin Liu, Ying Liu, Yucun Zhou
  • Patent number: 11906529
    Abstract: Methods and assays for diagnosis or prognosis of endometriosis include comparing an expression level or activity of miR-155 and JARID2 in a sample to detect a measurable difference. Therapeutic methods for treating endometriosis in a subject comprise identifying a subject as having a decreased expression level and/or activity of JARID2 in a sample obtained from the subject; and administering an agent that inhibits an activity of an miRNA that targets JARID2 or an agent that inhibits EZH2. Methods for screening for a compound useful for treating endometriosis are also provided and include contacting a cell with an effective amount of a test compound, and detecting whether the expression level or activity level of JARID2 or miR-155 in the cell is altered in the presence of the test compound.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: February 20, 2024
    Assignee: MARSHALL UNIVERSITY RESEARCH CORPORATION
    Inventors: Nalini Santanam, Kristeena Ray Wright, Sarah Brunty
  • Patent number: 11908715
    Abstract: A temperature-controlled substrate support for a substrate processing system includes a substrate support located in the processing chamber. The substrate support includes N zones and N resistive heaters, respectively, where N is an integer greater than one. A temperature sensor is located in one of the N zones. A controller is configured to calculate N resistances of the N resistive heaters during operation and to adjust power to N?1 of the N resistive heaters during operation of the substrate processing system in response to the temperature measured in the one of the N zones by the temperature sensor, the N resistances of the N resistive heaters, and N?1 resistance ratios.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: February 20, 2024
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Sairam Sundaram, Aaron Durbin, Ramesh Chandrasekharan