Patents Assigned to Research Institute of Industrial Science & Technology
  • Patent number: 10377696
    Abstract: An apparatus for separating dimethyl carbonate using pervaporation includes: an atmospheric distillation column and a high pressure distillation column distilling a mixture containing dimethyl carbonate and methanol and separating dimethyl carbonate from the mixture; and a pervaporation membrane module disposed between the atmospheric distillation column and the high pressure distillation column and allowing for permeation of the methanol to separate the methanol from the mixture, thereby reducing heat consumption and a process cost as compared to the case of only using an existing pressure swing distillation method.
    Type: Grant
    Filed: December 24, 2015
    Date of Patent: August 13, 2019
    Assignees: POSCO, NEDERLANDSE ORGANISATIE VOOR TOEGEPAST-NATUURWETENSCHAPPELIJK ONDERZOEK TNO, RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE & TECHNOLOGY
    Inventors: Joon-Hyun Baik, Jaap Ferdinand Vente, Anatolie Motelica
  • Patent number: 10287651
    Abstract: Disclosed is a thermal reduction apparatus. The thermal reduction apparatus according to the exemplary embodiment includes: a preheating unit which preheats a to-be-reduced material and loads the to-be-reduced material into a reducing unit; the reducing unit which is connected to the preheating unit and in which a thermal reduction reaction of the to-be-reduced material occurs; a cooling unit which is connected to the reducing unit and from which the to-be-reduced material flowing into the cooling unit is unloaded to the outside; a gate device which is installed between the preheating unit and the reducing unit; a gate device which is installed between the reducing unit and the cooling unit; a condensing device which is connected to the reducing unit and condenses a metal vapor; a first blocking unit which is installed in the reducing unit; and a second blocking unit which is installed in the reducing unit so as to be spaced apart from the first blocking unit.
    Type: Grant
    Filed: July 8, 2015
    Date of Patent: May 14, 2019
    Assignee: RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE & TECHNOLOGY
    Inventors: Dong Kyun Choo, Young Il Kim, Kil Won Cho, Wung Yong Choo, Jong Min Park, Jae Sin Park, Gilsoo Han, Good-Sun Choi, Gyu Chang Lee, Dae Kyu Park, Moon Chul Kim
  • Patent number: 10249885
    Abstract: The present invention relates to a cathode current collector for a solid oxide fuel cell and, more particularly, to a cathode current collector inserted between a cell and a metal separator constituting a unit of a fuel cell stack, and a solid oxide fuel cell comprising the same.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: April 2, 2019
    Assignees: RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE & TECHNOLOGY, ALANTUM CORPORATION
    Inventors: In-Sung Lee, Man-Ho Park, Jae-Ho Jun, Chi-Rok Park, Bum-Soo Kim, Chang-Woo Lee, Sung-Hwan Choi
  • Patent number: 10239041
    Abstract: Disclosed is a carbonation device including: a storage tank storing a carbonation subject solution; a droplet spray unit spraying the carbonation subject solution from the storage tank as droplets; a carbonation reaction tank disposed with the droplet spray unit and filled with a carbonation gas under a predetermined pressure to provide a slurry by a carbonation reaction of the droplet-sprayed carbonation subject solution with the filled carbonation gas; a carbonation gas supply unit supplying the carbonation gas into the carbonation reaction tank to maintain the carbonation gas in the carbonation reaction tank under the predetermined pressure; and a slurry outlet unit ejecting the slurry from the carbonation reaction tank to maintain the slurry formed in the carbonation reaction tank within a predetermined level, and a method of carbonation using the same.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: March 26, 2019
    Assignees: POSCO, RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE & TECHNOLOGY, MPPLY CO., LTD.
    Inventors: Uong Chon, Im Chang Lee, Ki Young Kim, Gi-Chun Han, Woonkyoung Park, Kee Uek Jeung, Chang Ho Song
  • Publication number: 20190055444
    Abstract: The present invention provides: a composition for low thermal expansion members, which is capable of forming a low thermal expansion member that has a thermal expansion coefficient close to those of the members within a semiconductor element, while having high heat resistance and high heat conductivity; and a low thermal expansion member. A composition for low thermal expansion members according to the present invention is characterized by containing: a heat conductive first inorganic filler that is bonded to one end of a first coupling agent; and a heat conductive second inorganic filler that is bonded to one end of a second coupling agent. This composition for low thermal expansion members is also characterized in that the first inorganic filler and the second inorganic filler are bonded to each other via the first coupling agent and the second coupling agent by means of a curing treatment.
    Type: Application
    Filed: February 28, 2017
    Publication date: February 21, 2019
    Applicants: JNC CORPORATION, OSAKA RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: TAKESHI FUJIWARA, JYUNICHI INAGAKI, YASUYUKI AGARI, HIROSHI HIRANO, JOJI KADOTA, AKINORI OKADA
  • Patent number: 10202530
    Abstract: The present invention relates to a composition capable of forming a heat dissipating member having high thermal conductivity and a heat dissipating member. The composition for a heat dissipating member of the present invention is a composition for a heat dissipating member that includes a first inorganic filler having thermal conductivity that is bonded to one end of a coupling agent; a second inorganic filler having thermal conductivity that is bonded to one end of a coupling agent, in which a bifunctional or higher polymerizable compound is additionally bonded to the other end of the bonded coupling agent; wherein the other end of the coupling agent bonded to the first inorganic filler is to be bonded to the polymerizable compound on the second inorganic filler during curing.
    Type: Grant
    Filed: August 26, 2015
    Date of Patent: February 12, 2019
    Assignees: JNC CORPORATION, Osaka Research Institute of Industrial Science and Technology
    Inventors: Takeshi Fujiwara, Jyunichi Inagaki, Masako Hinatsu, Akinori Okada, Yasuyuki Agari, Hiroshi Hirano, Joji Kadota
  • Publication number: 20190023900
    Abstract: The inventions are: a composition capable of forming a heat-dissipating member that has high thermal conductivity and in which the thermal expansion coefficient can be controlled; and a heat-dissipating member. This composition for a heat-dissipating member comprises a thermally conductive first inorganic filler bonded to one end of a first coupling agent, and a thermally conductive second inorganic filler bonded to one end of a second coupling agent, the composition being characterized in that: at least one of the first coupling agent and the second coupling agent is a liquid crystal silane coupling agent; the other end of the first coupling agent and the other end of the second coupling agent each have a functional group bondable with one another; and the other end of the first coupling agent bonds with the other end of the second coupling agent by a curing treatment.
    Type: Application
    Filed: February 28, 2017
    Publication date: January 24, 2019
    Applicants: JNC CORPORATION, OSAKA RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Takeshi FUJIWARA, Jyunichi INAGAKI, Masako HINATSU, Yasuyuki AGARI, Hiroshi HIRANO, Joji KADOTA, Akinori OKADA
  • Publication number: 20190023847
    Abstract: This invention is a composition capable of forming a heat-dissipating member that has high heat resistance and high thermal conductivity. This composition for a heat-dissipating member comprises a thermally conductive first inorganic filler bonded to one end of a first coupling agent, and a thermally conductive second inorganic filler bonded to one end of a second coupling agent, the composition being characterized in that: the other end of the first coupling agent and the other end of the second coupling agent are each bonded to a bifunctional or higher silsesquioxane by a curing treatment, as illustrated in FIG. 2; or at least one of the first coupling agent and the second coupling agent includes, in the structure thereof, a silsesquioxane, and the other end of the first coupling agent and the other end of the second coupling agent are bonded together as illustrated in FIG. 3.
    Type: Application
    Filed: February 28, 2017
    Publication date: January 24, 2019
    Applicants: JNC CORPORATION, OSAKA RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Takeshi FUJIWARA, TAKAYUKI HATTORI, JYUNICHI INAGAKI, TAKAFUMI KUNINOBU, Kazuhiro TAKIZAWA, YASUYUKI AGARI, HIROSHI HIRANO, JOJI KADOTA, AKINORI OKADA
  • Publication number: 20190009350
    Abstract: Provided is a cutter apparatus for machining a difficult-to-machine material, the cutter apparatus including: a cutting tool body which has a fastening portion formed at a center thereof; one or more cutters which are installed on the cutting tool body, and have superhard insert tips fixed to end portions thereof, respectively; and an angle adjusting unit which is installed in an internal space of the cutters, and adjusts angles of the cutters by spreading or retracting the cutters, so that angles of the cutters may be easily adjusted in accordance with a condition for cutting a difficult-to-machine material, in order to prevent damage to the superhard insert tips when machining a difficult-to-machine material having high hardness and high toughness.
    Type: Application
    Filed: December 21, 2016
    Publication date: January 10, 2019
    Applicants: POSCO, RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE & TECHNOLOGY
    Inventors: Kwang Soo PARK, Sook Hwan KIM
  • Publication number: 20190001623
    Abstract: Provided are an alloy coating steel plate and a method of manufacturing the same, and in this case, the alloy coating steel plate includes a steel, and an Al—Mg—Si alloy layer positioned on the steel plate, wherein the Al—Mg—Si alloy layer is formed to include Mg—Si alloy grains in an alloy layer configured in an Al—Mg alloy phase.
    Type: Application
    Filed: December 23, 2016
    Publication date: January 3, 2019
    Applicants: POSCO, RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE & TECHNOLOGY
    Inventors: Ji Hoon YANG, Jae In JEONG, Yong Hwa JUNG, Tae Yeob KIM
  • Publication number: 20180371197
    Abstract: Provided is a means capable of realizing a surface-roughening method for modifying the surface of a resin molded article to form a surficial layer, such as a coating or plating, or to impart a function derived from the surface configuration. The method comprises adding a resin composition and performing a post-treatment and is thus simpler and easier than conventional methods. The resin composition is a composition for resin surface roughening that contains an aliphatic polycarbonate and an alkali metal salt.
    Type: Application
    Filed: December 26, 2016
    Publication date: December 27, 2018
    Applicants: SUMITOMO SEIKA CHEMICALS CO., LTD., OSAKA RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Kiyoshi NISHIOKA, Hiroki MAEDA, Kei ISHIKURA, Kimihiro MATSUKAWA, Yukiyasu KASHIWAGI, Masashi SAITOH
  • Patent number: 10106866
    Abstract: An exemplary embodiment of the present invention provides a coated steel sheet on which a magnesium-aluminum alloy coating layer is formed, including: a steel sheet; and a coating layer configured to include a first magnesium-aluminum alloy layer formed on a top surface of the steel sheet and a second magnesium-aluminum alloy layer formed on a top surface of the first magnesium-aluminum alloy layer, wherein a magnesium content of the first magnesium-aluminum alloy layer is higher than that of the second magnesium-aluminum alloy layer.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: October 23, 2018
    Assignees: POSCO, RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE & TECHNOLOGY
    Inventors: Jae In Jeong, Ji Hoon Yang, Tae Yeob Kim, Yong Hwa Jung
  • Publication number: 20180241077
    Abstract: General Formula (I) Provided is an all solid state secondary-battery additive comprising a polyalkylene carbonate (I) represented by general formula (I), and by providing such additive, properties such as the charge-discharge capacity and interfacial resistance of an all-solid-state secondary battery are improved. (In general formula (I), R1 and R2 are each a C1-10 chain-like alkylene group or C3-10 cycloalkylene group, m is 0, 1, or 2 and n is an integer of 10 to 15000, and each R1, R2 and m in the polyalkylene carbonate (I) chain is independently the same or different.
    Type: Application
    Filed: August 16, 2016
    Publication date: August 23, 2018
    Applicants: OSAKA RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE AND TECHNOLOGY, SUMITOMO SEIKA CHEMICALS CO., LTD.
    Inventors: Masanari Takahashi, Mari Yamamoto, Yasuyuki Kobayashi, Shingo Ikeda, Yukiyasu Kashiwagi, Masashi Saitoh, Shuichi Karashima, Kiyoshi Nishioka, Ryo Miyabara
  • Patent number: 10046302
    Abstract: The present invention relates to an apparatus for manufacturing a potassium compound and a method of recovering a potassium compound from a brine, and provides the apparatus for manufacturing the potassium compound, including: a continuous pre-treatment apparatus including a crushing portion, a pulverization portion, and a particle size separation portion for processing a mixed raw material salt obtained after lithium, magnesium, and calcium are extracted from a brine to have a particle size for easy separation and sorting; a continuous potassium compound lump recovering apparatus continuously separating and recovering the potassium compound from the pre-treated mixed raw material salt; a continuous potassium compound separating and sorting apparatus continuously separating and sorting potassium chloride and a glaserite (Na2SO4.3K2SO4) from the recovered potassium compound; and a continuous potassium sulfate conversion apparatus extracting potassium sulfate from the separated glaserite.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: August 14, 2018
    Assignees: RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE & TECHNOLOGY, POSCO, MPPLY CO., LTD.
    Inventors: Uong Chon, Gi-Chun Han, Im Chang Lee, Ki Young Kim, Woon kyoung Park
  • Patent number: 10017838
    Abstract: A method of extracting lithium from a lithium bearing solution and specifically, economically extracting lithium from a lithium bearing solution comprising the steps of: adding a nucleus particle to a lithium bearing solution; and precipitating the dissolved lithium in the lithium bearing solution as lithium phosphate by adding a phosphorous supplying material to the lithium bearing solution including the nucleus particle is provided.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: July 10, 2018
    Assignee: RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE & TECHNOLOGY
    Inventors: Uong Chon, Ki Young Kim, Gi-Chun Han, Chang Ho Song, Young Seok Jang, Kee-Uek Jeung, So Ra Jung
  • Patent number: 10018236
    Abstract: An attachable high-manganese steel brake disk includes a first disk member including air vents disposed radially therein to be spaced apart from each other, and a pair of second disk members installed to be attached to two surfaces of the first disk member and having a braking surface in contact with a brake pad. Between the first disk member and the second disk members, at least the second disk members are provided as high manganese steel members.
    Type: Grant
    Filed: December 5, 2016
    Date of Patent: July 10, 2018
    Assignees: POSCO, RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE & TECHNOLOGY
    Inventors: Kwang Soo Park, Heung Ju Kim, Sook Hwan Kim
  • Patent number: 9994931
    Abstract: Disclosed is a method of extracting lithium from a solution including lithium. The method of extracting lithium from a solution including lithium includes: separating the solution including lithium into a monovalent ion-containing solution and a solution including ions having more than divalence using a separation membrane having a negative charge on its surface; removing impurities from the monovalent ion-containing solution; and precipitating lithium dissolved in the monovalent ion-containing solution into lithium phosphate by adding a phosphorus-supplying material to the monovalent ion-containing solution.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: June 12, 2018
    Assignees: POSCO, RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE & TECHNOLOGY
    Inventors: Uong Chon, Gi-Chun Han, Ki Young Kim, So Ra Jung, Kee Uek Jeung, Chang Ho Song, Young Seok Jang
  • Publication number: 20180111199
    Abstract: A copper alloy powder is a copper alloy powder for additive manufacturing. The copper alloy powder contains more than 1.00 mass % and not more than 2.80 mass % of chromium, and a balance of copper. A method for producing an additively-manufactured article includes a first step of preparing a copper alloy powder containing more than 1.00 mass % and not more than 2.80 mass % of chromium and a balance of copper and a second step of producing the additively-manufactured article from the copper alloy powder, and the additively-manufactured article is produced such that forming a powder layer including the copper alloy powder, and solidifying the copper alloy powder at a predetermined position in the powder layer to form a shaped layer are sequentially repeated to stack such shaped layers to thus produce the additively-manufactured article.
    Type: Application
    Filed: October 24, 2017
    Publication date: April 26, 2018
    Applicants: DAIHEN Corporation, Osaka Research Institute of Industrial Science and Technology
    Inventors: Ryusuke TSUBOTA, Yohei OKA, Akira OKAMOTO, Takayuki NAKAMOTO, Takahiro SUGAHARA, Naruaki SHINOMIYA, Mamoru TAKEMURA, Sohei UCHIDA
  • Patent number: 9938371
    Abstract: A composition capable of forming a heat-dissipation member having high thermal conductivity, and a heat-dissipation member. The composition for the heat-dissipation member of the present application contains a polymerizable liquid crystal compound having, at both terminals, a structure including an oxiranyl group or an oxetanyl group; a curing agent that cures the polymerizable liquid crystal compound; and an inorganic filler formed of nitride. A curing temperature of the composition for the heat-dissipation member is within or higher than the temperature range in which the polymerizable liquid crystal compound exhibits a liquid crystal phase, and within or lower than the temperature range in which the polymerizable liquid crystal compound exhibits an isotropic phase. The heat-dissipation member formed of such a composition can have excellent thermal conductivity owing to a synergistic effect between alignment of the liquid crystal compound and the inorganic filler formed of nitride.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: April 10, 2018
    Assignees: JNC CORPORATION, OSAKA RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Takeshi Fujiwara, Jyunichi Inagaki, Yukito Yada, Akinori Okada, Yasuyuki Agari, Hiroshi Hirano, Joji Kadota
  • Patent number: 9890264
    Abstract: An objective of the present invention is to provide an organic-inorganic hybrid acrylic polymer having an increased refractive index, which has a higher transparency and a less impaired scratch resistance; a metal oxide dispersion and a polymerizable composition as materials for the polymer; and the organic-inorganic hybrid polymer capable of being produced in a crack-free manner. Another objective of the present invention is to provide a high-performance antireflection film using the organic-inorganic hybrid polymer. The metal oxide dispersion of the present invention comprises a phosphorus compound represented by Formula (1): (wherein, R1 is a hydrogen atom, an alkyl group, an alkynyl group, an alkenyl group, an aryl group, an aliphatic heterocyclic group, or an aromatic heterocyclic group; R2 is an organic residue; and n is 1 or 2) and a metal oxide.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: February 13, 2018
    Assignees: OSAKA RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE AND TECHNOLOGY, DAIHACHI CHEMICAL INDUSTRY CO., LTD.
    Inventors: Kimihiro Matsukawa, Seiji Watase, Manabu Hirata