Patents Assigned to Rohm and Haas Electronic Materials CMP Holdings, Inc.
  • Patent number: 9259820
    Abstract: A chemical mechanical polishing pad is provided having a polishing layer; and an endpoint detection window incorporated into the chemical mechanical polishing pad, wherein the endpoint detection window is a plug in place window; wherein the endpoint detection window comprises a reaction product of ingredients, comprising: a window prepolymer, and, a window curative system, comprising: at least 5 wt % of a window difunctional curative; at least 5 wt % of a window amine initiated polyol curative; and, 25 to 90 wt % of a window high molecular weight polyol curative.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: February 16, 2016
    Assignees: Rohm and Haas Electronic Materials CMP Holdings, Inc., Dow Global Technologies LLC
    Inventors: Bainian Qian, Marty W. DeGroot, James Murnane, Angus Repper, Michelle Jensen, Jeffrey J. Hendron, John G. Nowland, David B. James, Fengji Yeh
  • Patent number: 9259821
    Abstract: A chemical mechanical polishing pad is provided containing: a polyurethane polishing layer having a composition and a polishing surface; wherein the polyurethane polishing layer composition exhibits an acid number of ?0.5 mg (KOH)/g; wherein the polishing surface is adapted for polishing a substrate; and, wherein the polishing surface exhibits a conditioning tolerance of ?80%.
    Type: Grant
    Filed: June 25, 2014
    Date of Patent: February 16, 2016
    Assignees: Rohm and Haas Electronic Materials CMP Holdings, Inc., Dow Global Technologies LLC
    Inventors: Bainian Qian, Marty W. DeGroot, Mark F. Sonnenschein
  • Patent number: 9238295
    Abstract: A chemical mechanical polishing pad is provided containing: a polishing layer; a plug in place endpoint detection window block; a rigid layer; and, a hot melt adhesive bonding the polishing layer to the rigid layer; wherein the polishing layer comprises the reaction product of ingredients, including: a polyfunctional isocyanate; and, a curative package; wherein the curative package contains an amine initiated polyol curative and a high molecular weight polyol curative; wherein the polishing layer exhibits a density of greater than 0.6 g/cm3; a Shore D hardness of 5 to 40; an elongation to break of 100 to 450%; and, a cut rate of 25 to 150 ?m/hr; and, wherein the polishing layer has a polishing surface adapted for polishing the substrate. Also provide are methods of making and using the chemical mechanical polishing pad.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: January 19, 2016
    Assignees: Rohm and Haas Electronic Materials CMP Holdings, Inc., Dow Global Technologies LLC
    Inventors: Bainian Qian, Michelle K. Jensen, Marty W. DeGroot, Angus Repper, James Murnane, Jeffrey James Hendron, John G. Nowland, David B. James, Fengji Yeh
  • Patent number: 9238296
    Abstract: A multilayer chemical mechanical polishing pad stack is provided containing: a polishing layer; a rigid layer; and, a hot melt adhesive bonding the polishing layer to the rigid layer; wherein the polishing layer exhibits a density of greater than 0.6 g/cm3; a Shore D hardness of 5 to 40; an elongation to break of 100 to 450%; and, a cut rate of 25 to 150 ?m/hr; and, wherein the polishing layer has a polishing surface adapted for polishing the substrate.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: January 19, 2016
    Assignees: Rohm and Haas Electronic Materials CMP Holdings, Inc., Dow Global Technologies LLC
    Inventors: James Murnane, Bainian Qian, John G. Nowland, Michelle K. Jensen, Jeffrey James Hendron, Marty W. DeGroot, David B. James, Fengji Yeh
  • Patent number: 9233451
    Abstract: A chemical mechanical polishing pad stack is provided containing: a polishing layer; a rigid layer; and, a hot melt adhesive bonding the polishing layer to the rigid layer; wherein the polishing layer comprises the reaction product of ingredients, including: a polyfunctional isocyanate; and, a curative package; wherein the curative package contains an amine initiated polyol curative and a high molecular weight polyol curative; wherein the polishing layer exhibits a density of greater than 0.6 g/cm3; a Shore D hardness of 5 to 40; an elongation to break of 100 to 450%; and, a cut rate of 25 to 150 ?m/hr; and, wherein the polishing layer has a polishing surface adapted for polishing the substrate.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: January 12, 2016
    Assignees: Rohm and Haas Electronic Materials CMP Holdings, Inc., Dow Global Technologies LLC
    Inventors: James Murnane, Bainian Qian, John G. Nowland, Michelle K. Jensen, Jeffrey James Hendron, Marty W. DeGroot, David B. James, Fengji Yeh
  • Patent number: 9216489
    Abstract: A chemical mechanical polishing pad is providing containing a polishing layer having a polishing surface; and, an endpoint detection window; wherein the endpoint detection window comprises a reaction product of ingredients, comprising: an isocyanate terminated urethane prepolymer having 2 to 6.5 wt % unreacted NCO groups; and, a curative system, comprising: at least 5 wt % of a difunctional curative; at least 5 wt % of an amine initiated polyol curative having at least one nitrogen atom per molecule and an average of at least three hydroxyl groups per molecule; and, 25 to 90 wt % of a high molecular weight polyol curative having a number average molecular weight, MN, of 2,000 to 100,000 and an average of 3 to 10 hydroxyl groups per molecule. Also provide are methods of making and using the chemical mechanical polishing pad.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: December 22, 2015
    Assignees: Rohm and Haas Electronic Materials CMP Holdings, Inc., Dow Global Technologies LLC
    Inventors: Bainian Qian, Marty W. DeGroot
  • Patent number: 9186772
    Abstract: A chemical mechanical polishing pad is provided, comprising: a polishing layer having a polishing surface; and, a broad spectrum, endpoint detection window block having a thickness along an axis perpendicular to a plane of the polishing surface; wherein the broad spectrum, endpoint detection window block, comprises a cyclic olefin addition polymer; wherein the broad spectrum, endpoint detection window block exhibits a uniform chemical composition across its thickness; wherein the broad spectrum, endpoint detection window block exhibits a spectrum loss ?40%; and, wherein the polishing surface is adapted for polishing a substrate selected from a magnetic substrate, an optical substrate and a semiconductor substrate.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: November 17, 2015
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Angus Repper, David B. James, Mary A. Leugers
  • Patent number: 9150759
    Abstract: A chemical mechanical polishing composition for polishing silicon wafers is provided, containing: water, optionally, an abrasive; a cation according to formula (I); piperazine or a piperazine derivative according to formula (II); and, a quaternary ammonium compound; wherein the chemical mechanical polishing composition exhibits a pH of 9 to 12. Also provided are methods of making and using the chemical mechanical polishing composition.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: October 6, 2015
    Assignees: Rohm and Haas Electronic Materials CMP Holdings, Inc, Nitta Haas Incorporated
    Inventors: Yasuyuki Itai, Naresh Kumar Penta, Naoko Kawai, Hiroyuki Nakano, Shinichi Haba, Yoshiharu Ota, Takayuki Matsushita, Masashi Teramoto, Sakiko Nakashima, Tomoyuki Toda, Koichi Yoshida, Lee Melbourne Cook
  • Patent number: 9144880
    Abstract: A chemical mechanical polishing pad for polishing a substrate selected from at least one of a magnetic substrate, an optical substrate and a semiconductor substrate is provided containing a polishing layer, wherein the polishing layer comprises the reaction product of raw material ingredients, including: a polyfunctional isocyanate; and, a curative package; wherein the curative package contains an amine initiated polyol curative and a high molecular weight polyol curative; wherein the polishing layer exhibits a density of greater than 0.6 g/cm3; a Shore D hardness of 5 to 40; an elongation to break of 100 to 450%; and, a cut rate of 25 to 150 ?m/hr; and, wherein the polishing layer has a polishing surface adapted for polishing the substrate. Also provide are methods of making and using the chemical mechanical polishing pad.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: September 29, 2015
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Bainian Qian, David B. James, James Murnane, Fengji Yeh, Marty W. DeGroot
  • Patent number: 9108290
    Abstract: A multilayer chemical mechanical polishing pad is provided, having: a polishing layer having a polishing surface, a counterbore opening, a polishing layer interfacial region parallel to the polishing surface; a porous subpad layer having a bottom surface and a porous subpad layer interfacial region parallel to the bottom surface; and, a broad spectrum, endpoint detection window block; wherein the polishing layer interfacial region and the porous subpad layer interfacial region form a coextensive region; wherein the multilayer chemical mechanical polishing pad has a through opening that extends from the polishing surface to the bottom surface of the porous subpad layer; wherein the counterbore opening opens on the polishing surface, enlarges the through opening and forms a ledge; and, wherein the broad spectrum, endpoint detection window block is disposed within the counterbore opening.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: August 18, 2015
    Assignees: Rohm and Haas Electronic Materials CMP Holdings, Inc., Dow Global Technologies LLC
    Inventors: Angus Repper, Marty W. DeGroot
  • Patent number: 9108293
    Abstract: A method for pretexturing the polishing surface of a chemical mechanical polishing layer, comprising providing a chemical mechanical polishing layer having a polishing surface; providing a belt sanding machine; feeding the chemical mechanical polishing layer through a gap between a transport belt and a calibrating sanding belt of the belt sanding machine; and, wherein the polishing surface comes into contact with the calibrating sanding belt; wherein the thickness of the polishing layer is reduced.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: August 18, 2015
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: John Henry Nunley, Jr., Andrew M Geiger, Jeffrey Benedict
  • Patent number: 9102034
    Abstract: A method of chemical mechanical polishing a substrate is provided, including: providing a substrate; providing a chemical mechanical polishing pad, comprising: a polishing layer having a composition and a polishing surface, wherein the composition of polishing layer is selected to exhibit an initial hydrolytic stability; coupled with a sustained hydrolytic instability; a rigid layer having a top surface and a bottom surface; a hot melt adhesive interposed between the base surface of the polishing layer and the top surface of the rigid layer; wherein the hot melt adhesive bonds the polishing layer to the rigid layer; a pressure sensitive platen adhesive layer having a stack side and a platen side; wherein the stack side of the pressure sensitive platen adhesive layer is adjacent to the bottom surface of the rigid layer; and, creating dynamic contact between the polishing surface and substrate to polish a surface of the substrate.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: August 11, 2015
    Assignees: Rohm and Haas Electronic Materials CMP Holdings, Inc., Dow Global Technologies LLC
    Inventors: Michelle Jensen, Bainian Qian, Fengji Yeh, Marty W. DeGroot, Mohammad T. Islam, Matthew Richard Van Hanehem, Darrell String, James Murnane, Jeffrey James Hendron, John G. Nowland
  • Patent number: 9073172
    Abstract: The invention provides a polishing pad useful for polishing at least one of semiconductor, magnetic and optical substrates. The polishing pad includes a polymeric matrix, the polymeric matrix having a polishing surface. In addition, polymeric microelements are distributed within the polymeric matrix and at the polishing surface of the polymeric matrix. The polymeric microelements have an outer surface and being fluid-filled for creating texture at the polishing surface. And alkaline-earth metal oxide-containing regions are distributed within each of the polymeric microelements and spaced to coat less than 50 percent of the outer surface of the polymeric microelements.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: July 7, 2015
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: David B. James, Donna M. Alden, Andrew R. Wank
  • Patent number: 9064806
    Abstract: A chemical mechanical polishing pad is provided having a polishing layer; and a window incorporated into the polishing layer; wherein the polishing layer comprises a reaction product of ingredients, including: a polishing layer prepolymer and a polishing layer curative system; wherein the polishing layer curative system includes a polishing layer amine initiated polyol curative, a polishing layer high molecular weight polyol curative and a polishing layer difunctional curative; and, wherein the window comprises a reaction product of ingredients, including: a window prepolymer and a window curative system; wherein the window curative system includes a window difunctional curative, a window amine initiated polyol curative and a window high molecular weight polyol curative; and, wherein the polishing layer exhibits a density of ?0.6 g/cm3; a Shore D hardness of 5 to 40; an elongation to break of 100 to 450%; and, a cut rate of 25 to 150 ?m/hr.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: June 23, 2015
    Assignees: Rohm and Haas Electronics Materials CMP Holdings, Inc., Dow Global Technologies LLC
    Inventors: Bainian Qian, Marty W. DeGroot, Michelle Jensen, James Murnane, Jeffrey J. Hendron, John G. Nowland, David B. James, Fengji Yeh
  • Patent number: 9034063
    Abstract: A method of manufacturing grooved polishing layers for use in chemical mechanical polishing pads is provided, wherein the formation of defects in the polishing layers are minimized.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: May 19, 2015
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Jeffrey James Hendron, Kenneth Vavala, Jeffrey Borcherdt Miller, Brian T. Cantrell, James T. Murnane, Kathleen McHugh, George H. McClain, Durron A. Hutt, Robert A. Brady, Christopher A. Young
  • Patent number: 9012327
    Abstract: A low defect chemical mechanical polishing composition for polishing silicon oxide containing substrates is provided comprising, as initial components: water, a colloidal silica abrasive; and, an additive according to formula I.
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: April 21, 2015
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventor: Yi Guo
  • Patent number: 8986585
    Abstract: A method of manufacturing polishing layers having a window for use in chemical mechanical polishing pads is provided, wherein a plurality of polishing layers having an integral window are derived from a cake, wherein the formation of density defects in the cake and the surface roughness of the polishing layers formed are minimized.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: March 24, 2015
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Brian T. Cantrell, Kathleen McHugh, James T. Murnane, George H. McClain, Durron A. Hutt, Robert A. Brady, Christopher A. Young, Jeffrey Borcherdt Miller
  • Patent number: 8980749
    Abstract: A method for polishing a silicon wafer is provided, comprising: providing a silicon wafer; providing a polishing pad having a polishing layer which is the reaction product of raw material ingredients, including: a polyfunctional isocyanate; and, a curative package; wherein the curative package contains an amine initiated polyol curative and a high molecular weight polyol curative; wherein the polishing layer exhibits a density of greater than 0.4 g/cm3; a Shore D hardness of 5 to 40; an elongation to break of 100 to 450%; and, a cut rate of 25 to 150 ?m/hr; and, wherein the polishing layer has a polishing surface adapted for polishing the silicon wafer; and, creating dynamic contact between the polishing surface and the silicon wafer.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: March 17, 2015
    Assignees: Rohm and Haas Electronic Materials CMP Holdings, Inc., Nitta Haas Incorporated
    Inventors: Yasuyuki Itai, Bainian Qian, Hiroyuki Nakano, David B. James, Naoko Kawai, Katsumasa Kawabata, Koichi Yoshida, Kazutaka Miyamoto, James Murnane, Fengji Yeh, Marty W. DeGroot
  • Patent number: 8894732
    Abstract: The invention provides a plurality of polymeric particles embedded with alkaline-earth metal oxide. The gas-filled polymeric microelements have a shell and a density of 5 g/liter to 200 g/liter. The shell has an outer surface and a diameter of 5 ?m to 200 ?m with the outer surface of the shell of the gas-filled polymeric particles having alkaline-earth metal oxide-containing particles embedded in the polymer. The alkaline-earth metal oxide-containing particles have an average particle size of 0.01 to 3 ?m distributed within each of the polymeric microelements to coat less than 50 percent of the outer surface of the polymeric microelements.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: November 25, 2014
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Andrew R. Wank, Donna M. Alden, David B. James
  • Patent number: 8888877
    Abstract: The invention involves a method of preparing an alkaline-earth metal oxide-containing polishing pad useful for polishing at least one of semiconductor, magnetic and optical substrates. The method includes introducing a feed stream of gas-filled polymeric microelements into a gas jet, the polymeric microelements having varied density, varied wall thickness and varied particle size. The method passes the polymeric microelements in the gas jet adjacent a Coanda block, the Coanda block having a curved wall for separating the polymeric microelements with Coanda effect, inertia and gas flow resistance. Then it separates various alkaline earth metal oxide constituents from the curved wall of the Coanda block to clean the polymeric microelements.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: November 18, 2014
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Donna M. Alden, David B. James, Andrew R. Wank, James Murnane