Patents Assigned to Semiconductor Physics Laboratory Co., Ltd.
  • Patent number: 11561254
    Abstract: Methods of characterizing electrical properties of a semiconductor layer structure on a wafer with topside semiconductor layers on an insulating or semi-insulating substrate, the semiconductor layer structure including a high electron mobility transistor (HEMT) heterostructure with a two-dimensional electron gas (2DEG) at a heterointerface between the semiconductor layers of the heterostructure. The methods include: (a) physically contacting the topside of the wafer within a narrow border zone at an edge of the wafer with a flexible metal cantilever electrode of a contacting device, wherein the flexible metal cantilever electrode contacts one or more of the semiconductor layers exposed at the narrow border zone so that the flexible metal cantilever electrode is in electrical contact with the 2DEG; and (b) applying corona charge bias and measuring a surface voltage of the semiconductor layers using a non-contact probe while maintaining the electrical contact with the 2DEG.
    Type: Grant
    Filed: May 27, 2021
    Date of Patent: January 24, 2023
    Assignee: SEMILAB Semiconductor Physics Laboratory Co., Ltd.
    Inventors: Marshall Wilson, Bret Schrayer, Alexandre Savtchouk, Dmitriy Marinskiy, Jacek Lagowski
  • Patent number: 10969370
    Abstract: An example method of characterizing a semiconductor sample includes measuring an initial value, Vin, of a surface potential at a region of a surface of the semiconductor sample, biasing the semiconductor sample to have a target surface potential value (V0) of 2V or less, and depositing a monitored amount of corona charge (?Q1) on the region of the surface after adjusting the surface potential to the target value. The method also includes measuring a first value, V1, of the surface potential at the region after depositing the corona charge, determining the first change of surface potential (?V1=V1?V0), and determining the first capacitance value C1=?Q1/?V1, and characterizing the semiconductor sample based on V0, V1, ?V1, ?Q1 and C1.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: April 6, 2021
    Assignee: SEMILAB Semiconductor Physics Laboratory Co., Ltd.
    Inventors: Jacek Lagowski, Marshall Wilson, Alexandre Savtchouk, Carlos Almeida, Csaba Buday
  • Patent number: 10883941
    Abstract: In an example implementation, a method includes illuminating a wafer with excitation light having a wavelength and intensity sufficient to induce photoluminescence in the wafer. The method also includes detecting photoluminescence emitted from a portion of the wafer in response to the illumination, and detecting excitation light reflected from the portion of the wafer. The method also includes comparing the photoluminescence emitted from the portion of the wafer and the excitation light reflected from the portion of the wafer, and identifying one or more defects in the wafer based on the comparison.
    Type: Grant
    Filed: June 20, 2018
    Date of Patent: January 5, 2021
    Assignee: SEMILAB Semiconductor Physics Laboratory Co., Ltd.
    Inventors: Zoltan Tamas Kiss, Laszlo Dudas, Zsolt Kovacs, Imre Lajtos, Gyorgy Nadudvari, Nicolas Laurent, Lubomir L. Jastrzebski
  • Patent number: 10763179
    Abstract: An example semiconductor wafer includes a semiconductor layer, a dielectric layer disposed on the semiconductor layer, and a layer of the metal disposed on the dielectric layer. An example method of determining an effective work function of a metal on the semiconductor wafer includes determining a surface barrier voltage of the semiconductor wafer, and determining a metal effective work function of the semiconductor wafer based, at least in part, on the surface barrier voltage.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: September 1, 2020
    Assignee: SEMILAB Semiconductor Physics Laboratory Co., Ltd.
    Inventors: Dmitriy Marinskiy, Thye Chong Loy, Jacek Lagowski, Sung-Li Wang, Lin-Jung Wu, Shyh-Shin Ferng, Yi-Hung Lin, Sheng-Shin Lin
  • Patent number: 10209190
    Abstract: A method that includes: illuminating a wafer with excitation light having a wavelength and intensity sufficient to induce photoluminescence in the wafer; filtering photoluminescence emitted from a portion of the wafer in response to the illumination; directing the filtered photoluminescence onto a detector to image the portion of the wafer on the detector with a spatial resolution of 1 ?m×1 ?m or smaller; and identifying one or more crystallographic defects in the wafer based on the detected filtered photoluminescence.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: February 19, 2019
    Assignee: SEMILAB Semiconductor Physics Laboratory Co., Ltd.
    Inventors: Zoltan Tamas Kiss, Laszlo Dudas, Gyorgy Nadudvari, Nicolas Laurent, Lubomir L. Jastrzebski
  • Patent number: 10018565
    Abstract: A method that includes: illuminating a wafer with excitation light having a wavelength and intensity sufficient to induce photoluminescence in the wafer; filtering photoluminescence emitted from a portion of the wafer in response to the illumination; directing the filtered photoluminescence onto a detector to image the portion of the wafer on the detector with a spatial resolution of 1 ?m×1 ?m or smaller; and identifying one or more crystallographic defects in the wafer based on the detected filtered photoluminescence.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: July 10, 2018
    Assignee: SEMILAB Semiconductor Physics Laboratory Co., Ltd.
    Inventors: Zoltan Tamas Kiss, Laszlo Dudas, Gyorgy Nadudvari, Nicolas Laurent, Lubomir L. Jastrzebski
  • Patent number: 10012593
    Abstract: In an example implementation, a method includes illuminating a wafer with excitation light having a wavelength and intensity sufficient to induce photoluminescence in the wafer. The method also includes detecting photoluminescence emitted from a portion of the wafer in response to the illumination, and detecting excitation light reflected from the portion of the wafer. The method also includes comparing the photoluminescence emitted from the portion of the wafer and the excitation light reflected from the portion of the wafer, and identifying one or more defects in the wafer based on the comparison.
    Type: Grant
    Filed: May 4, 2015
    Date of Patent: July 3, 2018
    Assignee: SEMILAB Semiconductor Physics Laboratory Co., Ltd.
    Inventors: Zoltan Tamas Kiss, Laszlo Dudas, Zsolt Kovacs, Imre Lajtos, Gyorgy Nadudvari, Nicolas Laurent, Lubomir L. Jastrzebski
  • Patent number: 8912799
    Abstract: A method is described for accurate measuring of the excess carrier lifetime on a semiconductor sample from the carrier decay after termination of the excitation pulse imposed on the steady-state carrier excitation. The method includes determining a quality of decay parameter using progressing segments in each carrier decay; establishing an accurate lifetime measurement multiparameter domain for experimental variables whereby the quality of decay parameter falls within prescribed limits from the ideal exponential decay value of QD=1; and determining an excess carrier lifetime for the semiconductor sample based on experimental measurement conditions within the domain and the quality of decay value within the predetermined range indicative of an accurate excess carrier lifetime measurement.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: December 16, 2014
    Assignee: Semiconductor Physics Laboratory Co., Ltd.
    Inventors: Jacek Lagowski, Marshall D. Wilson
  • Publication number: 20130169283
    Abstract: A method is described for accurate measuring of the excess carrier lifetime on a semiconductor sample from the carrier decay after termination of the excitation pulse imposed on the steady-state carrier excitation. The method includes determining a quality of decay parameter using progressing segments in each carrier decay; establishing an accurate lifetime measurement multiparameter domain for experimental variables whereby the quality of decay parameter falls within prescribed limits from the ideal exponential decay value of QD=1; and determining an excess carrier lifetime for the semiconductor sample based on experimental measurement conditions within the domain and the quality of decay value within the predetermined range indicative of an accurate excess carrier lifetime measurement.
    Type: Application
    Filed: November 9, 2012
    Publication date: July 4, 2013
    Applicant: Semiconductor Physics Laboratory Co., Ltd.
    Inventor: Semilab ZRT