Patents Assigned to Sharp Laboratories
-
Patent number: 9537192Abstract: A battery is provided with an associated method for transporting metal-ions in the battery using a low temperature molten salt (LTMS). The battery comprises an anode, a cathode formed from a LTMS having a liquid phase at a temperature of less than 150° C., a current collector submerged in the LTMS, and a metal-ion permeable separator interposed between the LTMS and the anode. The method transports metal-ions from the separator to the current collector in response to the LTMS acting simultaneously as a cathode and an electrolyte. More explicitly, metal-ions are transported from the separator to the current collector by creating a liquid flow of LTMS interacting with the current collector and separator.Type: GrantFiled: August 1, 2012Date of Patent: January 3, 2017Assignee: Sharp Laboratories of America, Inc.Inventors: Yuhao Lu, Sean Andrew Vail, Gregory M. Stecker, Jong-Jan Lee
-
Patent number: 9530191Abstract: Aspects of the present invention are related to systems and methods for detection and estimation of mosquito noise in an image or in a video sequence. A mosquito-noise estimate, at a pixel location, may be computed based on an image ring parameter, a statistical value of noise estimates in a first region associated with the pixel location, a maximum activity value in a second region associated with the pixel location and a noise estimate at the pixel location.Type: GrantFiled: June 19, 2015Date of Patent: December 27, 2016Assignee: Sharp Laboratories of America, Inc.Inventors: Anustup Kumar Choudhury, Christopher Andrew Segall
-
Patent number: 9531003Abstract: A method is provided for synthesizing sodium iron(II)-hexacyanoferrate(II). A Fe(CN)6 material is mixed with the first solution and either an anti-oxidant or a reducing agent. The Fe(CN)6 material may be either ferrocyanide ([Fe(CN)6]4?) or ferricyanide ([Fe(CN)6]3?). As a result, sodium iron(II)-hexacyanoferrate(II) (Na1+XFe[Fe(CN)6]Z.MH2O is formed, where X is less than or equal to 1, and where M is in a range between 0 and 7. In one aspect, the first solution including includes A ions, such as alkali metal ions, alkaline earth metal ions, or combinations thereof, resulting in the formation of Na1+XAYFe[Fe(CN)6]Z.MH2O, where Y is less than or equal to 1. Also provided are a Na1+XFe[Fe(CN)6]Z.MH2O battery and Na1+XFe[Fe(CN)6]Z.MH2O battery electrode.Type: GrantFiled: July 25, 2016Date of Patent: December 27, 2016Assignee: Sharp Laboratories of America, Inc.Inventors: Yuhao Lu, Sean Andrew Vail
-
Patent number: 9530433Abstract: A low overhead voice activity detection technique for a noise-canceling bioacoustic sensor consumes, as inputs, signals generated by a body microphone and an environment microphone and produces, as an output based on these inputs, an indication of whether voice activity is present. The technique applies a novel dual ANC configuration that produces, in addition to the normal noise reduction function, a signal composed of environmental sounds with body sounds attenuated and a signal composed of body sounds projected into the acoustic environment, primarily speech sounds. The technique then applies to these derived signals an algorithm based on the scientific observation that speech intensity, within limits, rises and falls to match environmental sound intensity to provide voice activity detection.Type: GrantFiled: March 17, 2014Date of Patent: December 27, 2016Assignee: Sharp Laboratories of America, Inc.Inventor: Fredrick Norman Hill
-
Patent number: 9531002Abstract: A method is provided for cycling power in a transition metal cyanometallate (TMCM) cathode battery. The method provides a battery with a TMCM cathode, an anode, and an electrolyte, where TMCM corresponds to the chemical formula of AXM1NM2M(CN)Y-d(H2O), where “A” is an alkali or alkaline earth metal, and where M1 and M2 are transition metals. The method charges the battery using a first charging current, or greater. In response to the charging current, a plating of “A” metal is formed overlying a plating surface of the anode. In response to discharging the battery, the “A” metal plating is removed from the anode plating surface. In one aspect, in an initial charging of the battery, a permanent solid electrolyte interphase (SEI) layer is formed overlying the anode plating surface. In subsequent charging and discharging cycles, the permanent SEI layer is maintained overlying the anode plating surface.Type: GrantFiled: March 25, 2015Date of Patent: December 27, 2016Assignee: Sharp Laboratories of America, Inc.Inventors: Yuhao Lu, Long Wang, Jong-Jan Lee
-
Publication number: 20160370203Abstract: A sensor calibration method and system dynamically compute a bias offset which is subtracted from field strength readings generated by a sensor to correct them. The three-dimensional space around a sensor is seeded with orientation targets. As the sensor is rotated to different orientations, field strength readings are generated by the sensor and assigned to different targets based on estimated proximity. Once occupancy of targets conforms to a first state of occupancy, a coarse bias offset is computed for the sensor using readings from occupied targets. Once occupancy of targets conforms to a second state of occupancy, a refined bias offset is computed for the sensor using readings from occupied targets. Multiple sensors may be calibrated concurrently. Moreover, a user interface provides a real-time graphic showing the location and occupancy status of individual targets and highlighting the individual target best aligned with a most recent corrected sensor reading.Type: ApplicationFiled: June 18, 2015Publication date: December 22, 2016Applicant: Sharp Laboratories of America, Inc.Inventor: Bryan Severt Hallberg
-
Patent number: 9524445Abstract: Aspects of the present invention are related to systems, methods and apparatus for boundary detection, in an image, by suppression of contours resulting from background textures and text in the image.Type: GrantFiled: February 27, 2015Date of Patent: December 20, 2016Assignee: Sharp Laboratories of America, Inc.Inventor: Richard John Campbell
-
Patent number: 9521483Abstract: A wearable physiological acoustic sensor has an embedded and stacked acoustic sensing component architecture that inhibits motion-related impulse noise and environmental background noise, and provides good body sound capture, good patient comfort and an unobtrusive presence. The embedded and stacked component architecture also includes an environmental microphone that enables cancellation of background noise for further noise reduction.Type: GrantFiled: January 21, 2014Date of Patent: December 13, 2016Assignee: Sharp Laboratories of America, Inc.Inventors: Bryan Severt Hallberg, Glenn Peter Piekstra
-
Patent number: 9484578Abstract: Methods are presented for synthesizing metal cyanometallate (MCM). A first method provides a first solution of AXM2Y(CN)Z, to which a second solution including M1 is dropwise added. As a result, a precipitate is formed of ANM1PM2Q(CN)R.FH2O, where N is in the range of 1 to 4. A second method for synthesizing MCM provides a first solution of M2C(CN)B, which is dropwise added to a second solution including M1. As a result, a precipitate is formed of M1[M2S(CN)G]1/T. DH2O, where S/T is greater than or equal to 0.8. Low vacancy MCM materials are also presented.Type: GrantFiled: May 29, 2014Date of Patent: November 1, 2016Assignee: Sharp Laboratories of America, Inc.Inventors: Yuhao Lu, Long Wang, Sean Vail, Jong-Jan Lee
-
Patent number: 9478798Abstract: A battery is provided with a hexacyanometallate cathode. The battery cathode is made from hexacyanometallate particles overlying a current collector. The hexacyanometallate particles have the chemical formula AXM1MM2N(CN)Z.d[H2O]ZEO.e[H2O]BND, where A is a metal from Groups 1A, 2A, or 3A of the Periodic Table, where M1 and M2 are each a metal with 2+ or 3+ valance positions, where “ZEO” and “BND” indicate zeolitic and bound water, respectively, where d is 0, and e is greater than 0 and less than 8. The anode material may primarily be a material such as hard carbon, soft carbon, oxides, sulfides, nitrides, silicon, metals, or combinations thereof. The electrolyte is non-aqueous. A method is also provided for fabricating hexacyanometallate with no zeolitic water content in response to dehydration annealing at a temperature of greater than 120 degrees C. and less than 200 degrees C.Type: GrantFiled: August 20, 2015Date of Patent: October 25, 2016Assignee: Sharp Laboratories of America, Inc.Inventors: Yuhao Lu, Jie Song, Jong-Jan Lee
-
Patent number: 9461834Abstract: A system and method are presented for providing electronic documents to online meeting participants. The method schedules a first online meeting between network-connected computer devices. A meeting server establishes a repository for the first online meeting. The meeting server receives an electronically formatted document sent to a first communication address assigned to the first online meeting repository, and stores the document in the first online meeting repository. A first computer device is able to log into the meeting server and access the document from the first online meeting repository at a time prior to, during, or after the first online meeting. Likewise, the meeting server is able to store a document received prior to, during, or after the meeting.Type: GrantFiled: April 22, 2010Date of Patent: October 4, 2016Assignee: Sharp Laboratories of America, Inc.Inventor: Andrew Rodney Ferlitsch
-
Patent number: 9460490Abstract: A system for determining a high resolution output image that includes receiving a low resolution image and determining an intermediate high resolution image. The system detects semantic features based upon the input image and selects corresponding semantic components from a database based upon the detected semantic features. The first intermediate high resolution image is modified based upon information from the corresponding semantic components to determine the high resolution output image.Type: GrantFiled: December 2, 2015Date of Patent: October 4, 2016Assignee: Sharp Laboratories of America, Inc.Inventors: Anustup Kumar Choudhury, Christopher A. Segall
-
Patent number: 9455431Abstract: A method is provided for fabricating a cyanometallate cathode battery. The method provides a cathode of AXM1YM2Z(CN)N.MH2O, where “A” is selected from a first group of metals, and where M1 and M2 are transition metals. The method provides an anode and a metal ion-permeable membrane separating the anode from the cathode. A third electrode is also provided including “B” metal ions selected from the first group of metals. Typically, the first group of metals includes alkali and alkaline metals. The method intercalates “B” metal ions from the third electrode to the anode, the cathode, or both the anode and cathode to form a completely fabricated battery. In one aspect, a solid electrolyte interface (SEI) layer including the “B” metal ions overlies a surface of the anode, the cathode, or both the anode and cathode. A cyanometallate cathode battery is also provided.Type: GrantFiled: February 6, 2014Date of Patent: September 27, 2016Assignee: Sharp Laboratories of America, Inc.Inventors: Yuhao Lu, Long Wang, Jong-Jan Lee
-
Patent number: 9452630Abstract: A method is provided for controlling printed ink horizontal. cross-sectional areas using fluoropolymer templates. The method initially forms a fluoropolymer template overlying a substrate. The fluoropolymer template has a horizontal first cross-sectional dimension. Then, a primary ink is printed overlying the fluoropolymer template having a horizontal second cross-sectional dimension less than the first cross-sectional dimension. In the case of a fluoropolymer line having a template length greater than a template width, where the template width is the first cross-sectional dimension, printing the primary ink entails printing a primary ink line having an ink length greater than an ink width, where the ink width is the second cross-sectional dimension. In one aspect, the method prints a plurality of primary ink layers, each primary ink layer having an ink width less than the template width. Each overlying primary ink layer can be printed prior to solvents in underlying primary ink layers evaporating.Type: GrantFiled: June 16, 2014Date of Patent: September 27, 2016Assignee: Sharp Laboratories of America, Inc.Inventors: Kurt Ulmer, Kanan Puntambekar, Lisa Stecker
-
Patent number: 9455446Abstract: A sodium or potassium battery is provided, prior to an initial charge and discharge cycle, with a halogen salt additive. As is conventional, the battery is made up of the following components: an anode, a cathode, and an electrolyte. In addition, the battery includes a halogen salt (MX), where M is a metal and X is a halogen element. The halogen salt is added to the anode, the cathode, the electrolyte, or combinations thereof. The concentration MX with respect to the component(s) to which it is added is in the range of 0.01% to 10% in weight. The element X can be selected from the group of halogen elements listed in the Periodic Table. M is a material such as lithium, sodium, potassium, cesium, magnesium, calcium, barium, titanium, manganese, iron, cobalt, nickel, copper, zinc, ammonium, or combinations thereof. Advantageously, the electrolyte may be either aqueous or non-aqueous.Type: GrantFiled: August 14, 2015Date of Patent: September 27, 2016Assignee: Sharp Laboratories of America, Inc.Inventors: Yuhao Lu, Sean Vail, Xin Zhao, Jie Song
-
Patent number: 9450681Abstract: A method and system for low latency, low power, high fidelity wireless transmission of quaternions provides superior performance of real-time applications that transmit and consume quaternions. The method and system provide a quaternion transmission protocol wherein quaternion sources, such as sensor units, construct quaternion update packets containing quaternions encoded in a notation that both conserves bandwidth and preserves angular resolution provided by quaternions. The update packets are transmitted on a wireless communication link to a quaternion destination, such as a data hub, which deconstructs and interprets the update packets.Type: GrantFiled: May 8, 2015Date of Patent: September 20, 2016Assignee: Sharp Laboratories of America, Inc.Inventor: Bryan Severt Hallberg
-
Patent number: 9450224Abstract: A method is provided for synthesizing sodium iron(II)-hexacyanoferrate(II). A Fe(CN)6 material is mixed with the first solution and either an anti-oxidant or a reducing agent. The Fe(CN)6 material may be either ferrocyanide ([Fe(CN)6]4?) or ferricyanide ([Fe(CN)6]3?). As a result, sodium iron(II)-hexacyanoferrate(II) (Na1+XFe[Fe(CN)6]Z.MH2O is formed, where X is less than or equal to 1, and where M is in a range between 0 and 7. In one aspect, the first solution including includes A ions, such as alkali metal ions, alkaline earth metal ions, or combinations thereof, resulting in the formation of Na1+XAYFe[Fe(CN)6]Z.MH2O, where Y is less than or equal to 1. Also provided are a Na1+XFe[Fe(CN)6]Z.MH2O battery and Na1+XFe[Fe(CN)6]Z.MH2O battery electrode.Type: GrantFiled: October 30, 2013Date of Patent: September 20, 2016Assignee: Sharp Laboratories of America, Inc.Inventors: Yuhao Lu, Sean Andrew Vail
-
Patent number: 9450842Abstract: A system and method are presented for monitoring handheld devices in a testing environment. At least one handheld device is provided, typically several, that is capable of performing a first plurality of functions in a non-test mode, and a more limited number of functions in a test mode. In a test environment the handheld device should be set to perform in the test mode. In the event of the handheld device mode being changed from the test mode to non-test mode, the handheld device generates a non-test mode signal. A monitoring software application records the non-test mode signal. In one aspect, the monitoring application is embedded in a remote proctor device. The remote proctor device monitoring application may send a mode interrogation message to the handheld device, and the handheld device generates the non-test mode signal in response to the mode interrogation message.Type: GrantFiled: September 22, 2014Date of Patent: September 20, 2016Assignee: Sharp Laboratories of America, Inc.Inventors: Helen Jan Crowell, Dane Nelson Wenzel
-
Patent number: 9448684Abstract: Aspects of the present invention are related to systems, methods and apparatus for setting a drawing characteristic of a digital marking device. According to a first aspect of the present invention, detection of a touch gesture simultaneous to engagement of a digital marking device with a digital mark surface may effectuate a drawing-context interpretation of the touch gesture. A characteristic of the digital marking device may be set according to the drawing-context interpretation of the touch gesture.Type: GrantFiled: September 21, 2012Date of Patent: September 20, 2016Assignee: Sharp Laboratories of America, Inc.Inventors: Neil Runde, Andrew Ferlitsch
-
Publication number: 20160267638Abstract: Systems and methods for estimation of compression noise in an image or in a video sequence are provided. Difference values in a direction are computed, and one or more statistical feature values for the difference values are computed in association with a plurality of offsets. At least one feature value is computed using the plurality of statistical feature values, and a compression-noise estimate may be determined in accordance with a criterion based on a comparison of the at least on feature value and an associated threshold and an additive noise estimate.Type: ApplicationFiled: May 20, 2016Publication date: September 15, 2016Applicant: Sharp Laboratories of America, Inc.Inventor: Christopher A. SEGALL