Patents Assigned to Shimadzu Research Laboratory (Shanghai) Co. Ltd.
  • Patent number: 11735407
    Abstract: The present invention relates to the field of mass and/or ion mobility spectrometers. Provided is an ionization device and a mass spectrometer and an ion mobility spectrometer having same. Further provided is an ionization method. A sampling probe of the ionization device of the present invention is able to actively and rapidly collect samples, while a sampling device and a thermal desorption device are combined into one, simplifying and compacting the sampling device. An ionization part is provided downstream of the sampling and desorption part, ensuring that the sampling probe will not interfere with a flow field or an electric field between the ionization part and the analysis assembly inlet, thus ensuring repeatability of the device signal and flexibility of analysis.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: August 22, 2023
    Assignee: SHIMADZU RESEARCH LABORATORY (SHANGHAI) CO. LTD.
    Inventors: Yupeng Cheng, Wenjian Sun
  • Patent number: 11164735
    Abstract: The invention provides an ion mobility analyzer apparatus and analysis method. The analyzer apparatus includes an ion source, two groups of parallel electrodes, a power supply unit and a detector. The drift region is formed between the two groups of parallel electrodes, and has an ion entrance connected to the ion source and an ion exit. Each group of parallel electrodes is located in a plane respectively, and the two planes are parallel to each other. The power supply unit is configured to apply direct current potentials on the two groups of parallel electrodes to form a direct current electric field that applies an opposing force on ions against the gas flow so that ions with different mobilities are trapped under the combined effect of the gas flow and the direct current electric field. The detector is connected to the ion exit to detect ions.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: November 2, 2021
    Assignee: SHIMADZU RESEARCH LABORATORY (SHANGHAI) CO., LTD.
    Inventors: Kent James Gillig, Keke Wang, Wenjian Sun, Xiaoqiang Zhang, Yupeng Cheng
  • Patent number: 11031229
    Abstract: The present disclosure provides a sample desorption ionization device and analysis method for a mass spectrometer. The device has a first gas pressure region and a second gas pressure region lower than the first gas pressure region. The device includes: a heating desorption device, carrying a sample and heating the sample, an analyte in the sample is desorbed from the sample under a heating action and then enters the first gas pressure region; a vacuum interface component, connected with the first gas pressure region and the second gas pressure region, and causing the analyte to enter the second gas pressure region from the first gas pressure region under the drive of a gas flow; and a soft ionization source, converting gas molecules in the second gas pressure region into activated gas molecules, the analyte entering the second gas pressure region realizes soft ionization after interacting with the activated gas molecules.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: June 8, 2021
    Assignee: SHIMADZU RESEARCH LABORATORY (SHANGHAI) CO., LTD.
    Inventors: Yunqing Huang, Wenjian Sun
  • Patent number: 10739308
    Abstract: The invention provides ion mobility analyzer and analysis method. The analyzer includes an ion source, a first drift/analyzer region provided with an ions entrance, a second drift/analyzer region provided with an ions exit, a connection region connecting the first drift/analyzer region and the second drift/analyzer region, and a detector connected to the ion exit. Direct current electric fields and gas flows in the first drift/analyzer region and the second drift/analyzer region apply opposing forces on ions, and first and second gas flows have the same gas flow direction. The connection region includes a third direct current electric field that causes ions to transfer from the first drift/analyzer region to the second drift/analyzer region. Because the first and second regions have the same gas flow direction, the invention achieves stable resolution and sensitivity as a high-resolution ion mobility analyzer and/or an ion mobility filter for a continuous ion beam.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: August 11, 2020
    Assignee: SHIMADZU RESEARCH LABORATORY (SHANGHAI) CO., LTD.
    Inventors: Kent James Gillig, Keke Wang, Wenjian Sun, Xiaoqiang Zhang
  • Patent number: 10014168
    Abstract: An ion guiding device (3) and method, the ion guiding device (3) having: a group of electrode arrays distributed along an axis in space, and a power supply providing an asymmetric alternating current (AC) electric field substantially along the axis; the AC field asymmetrically alternates between positive and negative along the axis to drive the ions move in the direction corresponding to said AC electric field such that ions are guided into said ion guiding device (3) in a continuous or quasi-continuous flow manner while being guided out in a pulsed manner along the axis.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: July 3, 2018
    Assignee: SHIMADZU RESEARCH LABORATORY (SHANGHAI) CO., LTD.
    Inventors: Xiaoqiang Zhang, Wenjian Sun
  • Patent number: 9406495
    Abstract: A linear ion beam bonding apparatus and an array structure thereof, comprising a pair of primary radiofrequency electrodes (501 and 502) extending along the axial direction and oppositely arranged on two sides of the central axis of the linear ion beam bonding apparatus. Section patterns on different section planes of each of the primary radiofrequency electrodes (501 and 502) and perpendicular to the central axis are all kept symmetric via a primary symmetric plane (506) of the central axis. Radiofrequency voltages attached to the primary radiofrequency electrodes (501 and 502) are of identical phases. An ion extraction groove (84) is arranged on at least one of the primary radiofrequency electrodes (501 and 502), while at least one pair of auxiliary electrodes (503 and 505) are arranged on two sides of the pair of primary radiofrequency electrodes (501 and 502). The auxiliary electrodes (503 and 505) are arranged in duality to the primary symmetric plane (506).
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: August 2, 2016
    Assignee: SHIMADZU RESEARCH LABORATORY (SHANGHAI) CO. LTD.
    Inventors: Gongyu Jiang, Wenjian Sun
  • Patent number: 9192053
    Abstract: The present invention provides a method for preparing an ion optical device. A substrate is fabricated with a hard material adapted for a grinding process, the substrate at least including a planar surface, and including at least one insulating material layer. Next, one or more linear grooves are cut on the planar surface, to form multiple discrete ion optical electrode regions on the planar surface separated by the linear grooves. Then, conductive leads are fabricated on other substrate surfaces than the planar surface and in a through hole inside the substrate, to provide voltages required on ion optical electrodes. By using high-hardness materials in cooperation with high-precision machining, higher precision and a desired discrete electrode contour can be obtained.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: November 17, 2015
    Assignee: SHIMADZU RESEARCH LABORATORY (SHANGHAI) CO. LTD.
    Inventors: Hui Mu, Gongyu Jiang, Li Ding, Jianliang Li, Wenjian Sun
  • Patent number: 9105456
    Abstract: A tandem mass spectrometer is provided in the present invention. The mass spectrometer includes an ion source, a quadrupole mass filter located at downstream side of the ion source, a linear ion trap disposed at downstream side of the mass filter and an ion detector placed on the side of the ion trap, all of which are placed in a vacuum environment. The instrument can obtain MS meeting the standard spectral library search criteria by the quadrupole mass filter cooperating with linear ion trap, realize any multi-stage MS under two modes of axial collision and resonance excitation, and predict and optimize the inflow amount and types of samples under the ion trap analysis mode by the quadrupole. A tandem MS analysis method is also provided, which can repeatedly provide precursor ion selection, ion acceleration, achieve high-energy collision dissociation, low product ion mass discrimination effect.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: August 11, 2015
    Assignee: SHIMADZU RESEARCH LABORATORY (SHANGHAI) CO. LTD.
    Inventors: Gongyu Jiang, Hui Mu, Li Ding
  • Publication number: 20150170898
    Abstract: A linear ion beam bonding apparatus and an array structure thereof, comprising a pair of primary radiofrequency electrodes (501 and 502) extending along the axial direction and oppositely arranged on two sides of the central axis of the linear ion beam bonding apparatus. Section patterns on different section planes of each of the primary radiofrequency electrodes (501 and 502) and perpendicular to the central axis are all kept symmetric via a primary symmetric plane (506) of the central axis. Radiofrequency voltages attached to the primary radiofrequency electrodes (501 and 502) are of identical phases. An ion extraction groove (84) is arranged on at least one of the primary radiofrequency electrodes (501 and 502), while at least one pair of auxiliary electrodes (503 and 505) are arranged on two sides of the pair of primary radiofrequency electrodes (501 and 502). The auxiliary electrodes (503 and 505) are arranged in duality to the primary symmetric plane (506).
    Type: Application
    Filed: February 26, 2013
    Publication date: June 18, 2015
    Applicant: SHIMADZU RESEARCH LABORATORY (SHANGHAI) CO., LTD.
    Inventors: Gongyu Jiang, Wenjian Sun
  • Patent number: 8704170
    Abstract: The current invention involves a method and a device for generating and analyzing ions in order to analyze samples directly without sample preparation. The gaseous neutral molecules are desorbed under atmospheric pressure by a desorption method. The desorbed neutral molecules are then transferred into a low pressure region where they are post-ionized by a mist from an electrospray probe tip or by photons from a vacuum UV source. The generated ions are then focused in a time varying electric field in the low pressure chamber before they are transferred into a mass spectrometer or ion mobility spectrometer for further analysis.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: April 22, 2014
    Assignee: Shimadzu Research Laboratory (Shanghai) Co. Ltd.
    Inventors: Sumio Kumashiro, Wenjian Sun, Li Ding
  • Publication number: 20140087063
    Abstract: The present invention provides a method for preparing an ion optical device. A substrate is fabricated with a hard material adapted for a grinding process, the substrate at least including a planar surface, and including at least one insulating material layer. Next, one or more linear grooves are cut on the planar surface, to form multiple discrete ion optical electrode regions on the planar surface separated by the linear grooves. Then, conductive leads are fabricated on other substrate surfaces than the planar surface and in a through hole inside the substrate, to provide voltages required on ion optical electrodes. By using high-hardness materials in cooperation with high-precision machining, higher precision and a desired discrete electrode contour can be obtained.
    Type: Application
    Filed: December 2, 2013
    Publication date: March 27, 2014
    Applicant: SHIMADZU RESEARCH LABORATORY (SHANGHAI) CO. LTD.
    Inventors: Hui Mu, Gongyu Jiang, Li Ding, Jianliang Li, Wenjian Sun
  • Patent number: 8536523
    Abstract: The present invention involves a method and a device for sequentially desorbing and ionizing mixed analytes on a solid surface with a gradual temperature scan, and continuously collecting data for multiple times in the gradual desorption and ionization process. By gradually increase the temperature of at least one part of the sample, the analytes with different thermal desorption capabilities are sequentially desorbed from surfaces of the solid sample, thereby providing a sample pre-separation scheme, so as to reduce difficulties to subsequent mass spectrum detection. Meanwhile, since mass spectrum data of the analytes with different boiling points is collected for multiple times during a temperature scan, the analytes with a low boiling point can be detected first at lower temperature in order to avoid rapid exhaustion at higher temperature, thereby improving the detection efficiency of the analytes with low boiling points.
    Type: Grant
    Filed: April 12, 2010
    Date of Patent: September 17, 2013
    Assignee: Shimadzu Research Laboratory (Shanghai) Co. Ltd.
    Inventors: Ding Li, Wenjian Sun
  • Patent number: 8507848
    Abstract: This invention presents a kind of ion guide device comprising multiple layers of stretched wire electrodes crossing in space. These wire electrodes are distributed along a defined ion guiding axis in the ion guide device. Each layer of wire electrodes contains at least two wire electrodes with some distance away from the guiding axis, and rotates with an angle relative to wire electrodes on neighboring layer. The ion guide contains multiple layers of wire electrodes to form a cage-like ion guide tunnel and keeps the mounting framework of those wire electrodes outside of the ion guide tunnel, thus reducing the interference of the gas flows from the ion guide device. A power supply provides voltage to each layer of wire electrodes, creates an electric field which focuses the ions towards the guiding axis.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: August 13, 2013
    Assignees: Shimadzu Research Laboratory (Shanghai) Co. Ltd., Shimadzu Corporation
    Inventors: Li Ding, Gongyu Jiang, Wenjian Sun
  • Publication number: 20130187044
    Abstract: This invention presents a kind of ion guide device comprising multiple layers of stretched wire electrodes crossing in space. These wire electrodes are distributed along a defined ion guiding axis in the ion guide device. Each layer of wire electrodes contains at least two wire electrodes with some distance away from the guiding axis, and rotates with an angle relative to wire electrodes on neighboring layer. The ion guide contains multiple layers of wire electrodes to form a cage-like ion guide tunnel and keeps the mounting framework of those wire electrodes outside of the ion guide tunnel, thus reducing the interference of the gas flows from the ion guide device. A power supply provides voltage to each layer of wire electrodes, creates an electric field which focuses the ions towards the guiding axis.
    Type: Application
    Filed: January 24, 2012
    Publication date: July 25, 2013
    Applicants: SHIMADZU CORPORATION, SHIMADZU RESEARCH LABORATORY (SHANGHAI) CO. LTD.
    Inventors: LI DING, GONGYU JIANG, WENJIAN SUN
  • Patent number: 8384025
    Abstract: A device for separating, enriching and detecting ions comprises: a gas tube, in which a carrier gas flows at a uniform rate; an ion source; multiple electrodes provided in the gas tube and applied with electric voltages respectively, so that at least an electric field is produced along the axis of the gas tube; an ion detector; and an ion extraction channel, by which specific enriched ions will be guided across the side wall of the gas tube toward the ion detector and be analyzed. The device enriches ions utilizing the following characteristic: compound ions with specific ion mobility maintain a dynamic balance for a period of time in a flow field under the combination of a carrier gas and a suitable electrical field against the direction of the carrier gas. Simultaneously, multiple compound particles with different ion motilities can be separated and enriched at positions with different electrical field intensities in a flow field in the same manner.
    Type: Grant
    Filed: November 26, 2009
    Date of Patent: February 26, 2013
    Assignee: Shimadzu Research Laboratory (Shanghai) Co. Ltd
    Inventors: Wenjian Sun, Li Ding
  • Publication number: 20130026359
    Abstract: The current invention involves a method and a device for generating and analyzing ions in order to analyze samples directly without sample preparation. The gaseous neutral molecules are desorbed under atmospheric pressure by a desorption method. The desorbed neutral molecules are then transferred into a low pressure region where they are post-ionized by a mist from an electrospray probe tip or by photons from a vacuum UV source. The generated ions are then focused in a time varying electric field in the low pressure chamber before they are transferred into a mass spectrometer or ion mobility spectrometer for further analysis.
    Type: Application
    Filed: April 22, 2011
    Publication date: January 31, 2013
    Applicant: SHIMADZU RESEARCH LABORATORY (SHANGHAI) CO., LTD.
    Inventors: Sumio Kumashiro, Wenjian Sun, Li Ding
  • Publication number: 20120292498
    Abstract: A tandem mass spectrometer is provided in the present invention. The mass spectrometer includes an ion source, a quadrupole mass filter located at downstream side of the ion source, a linear ion trap disposed at downstream side of the mass filter and an ion detector placed on the side of the ion trap, all of which are placed in a vacuum environment. The instrument can obtain MS meeting the standard spectral library search criteria by the quadrupole mass filter cooperating with linear ion trap, realize any multi-stage MS under two modes of axial collision and resonance excitation, and predict and optimize the inflow amount and types of samples under the ion trap analysis mode by the quadrupole. A tandem MS analysis method is also provided, which can repeatedly provide precursor ion selection, ion acceleration, achieve high-energy collision dissociation, low product ion mass discrimination effect.
    Type: Application
    Filed: January 26, 2011
    Publication date: November 22, 2012
    Applicant: SHIMADZU RESEARCH LABORATORY (SHANGHAI) CO. LTD.
    Inventors: Gongyu Jiang, Hui Mu, Li Ding
  • Patent number: 8299444
    Abstract: This invention relates to a desorption/ionization source operated under ambient conditions for direct analysis of solid or liquid samples on a surface. The source comprises of a laser desorption system and a UV/electrospray combined ionization system. The source is suitable for simultaneously ionizing samples with different polarity in a complex mixture. At the same time, the compact design of the source with multiple channels can maintain the level of local concentration of the analyte ions inside the source for higher efficiency of sample ionization and introduction.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: October 30, 2012
    Assignee: Shimadzu Research Laboratory (Shanghai) Co. Ltd.
    Inventors: Li Ding, Wenjian Sun
  • Patent number: 8294085
    Abstract: A mass spectrometric analyzer and an analysis method based on the detection of ion image current are provided. The method in one embodiment includes using electrostatic reflectors or electrostatic deflectors to enable pulsed ions to move periodically for multiple times in the analyzer, forming time focusing in a portion of the ion flight region thereof, and forming an confined ion beam in space; enabling the ion beam to pass through multiple tubular image current detectors arranged in series along an axial direction of the ion beam periodically, using a low-noise electronic amplification device to detect image currents picked up by the multiple tubular detectors differentially, and using a data conversion method, such as a least square regression, to acquire a mass spectrum.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: October 23, 2012
    Assignee: Shimadzu Research Laboratory (Shanghai) Co. Ltd.
    Inventor: Li Ding
  • Publication number: 20120037797
    Abstract: The present invention involves a method and a device for sequentially desorbing and ionizing mixed analytes on a solid surface with a gradual temperature scan, and continuously collecting data for multiple times in the gradual desorption and ionization process. By gradually increase the temperature of at least one part of the sample, the analytes with different thermal desorption capabilities are sequentially desorbed from surfaces of the solid sample, thereby providing a sample pre-separation scheme, so as to reduce difficulties to subsequent mass spectrum detection. Meanwhile, since mass spectrum data of the analytes with different boiling points is collected for multiple times during a temperature scan, the analytes with a low boiling point can be detected first at lower temperature in order to avoid rapid exhaustion at higher temperature, thereby improving the detection efficiency of the analytes with low boiling points.
    Type: Application
    Filed: April 12, 2010
    Publication date: February 16, 2012
    Applicant: SHIMADZU RESEARCH LABORATORY (SHANGHAI) CO. LTD.
    Inventors: Ding Li, Wenjian Sun