Patents Assigned to Siemens-Pacesetter, Inc.
  • Patent number: 5007864
    Abstract: A lead-to-pacemaker adapter allows the use of a smaller diameter lead connector than that for which the pacemaker was designed. The pacemaker is shipped with the adapter installed. If the adapter is not to be used, provision is made for its easy removal. The adapter is shown and described for use in a unipolar lead system. The adapter permits direct electrical connection from the terminal pin electrode to the pacemaker connector block and its terminal set screw without the interposition of any intermediate connecting elements.
    Type: Grant
    Filed: November 27, 1989
    Date of Patent: April 16, 1991
    Assignee: Siemens-Pacesetter, Inc.
    Inventor: William H. Stutz, Jr.
  • Patent number: 5003975
    Abstract: An implantable pacemaker having a unipolar/bipolar lead interchangeability includes lead impedance measuring capability for automatically measuring lead impedance, initiated by the occurrence of predetermined events, such as whenever a programming change is made, whenever capture fails to occur in response to an applied stimulation pulse, whenever the leads are changed, and whenever a significant change of lead impedance is otherwise detected. If a proper impedance measurement is not sensed for a programmed configuration, additional impedance measurements for other possible configurations are made in an ordered sequence in order to determine if an improper lead has been implanted or if a electrode has broken. If an operable configuration is found, signified by a measurement of impedance as expected, the pacemaker continues operation in that configuration, thereby assuring that capture can continue to occur until such time as the problem which has been detected can be corrected.
    Type: Grant
    Filed: October 17, 1989
    Date of Patent: April 2, 1991
    Assignee: Siemens-Pacesetter, Inc.
    Inventors: Werner Hafelfinger, Jason A. Sholder, Murray P. King, James L. Duncan
  • Patent number: 4998975
    Abstract: A cardiac defibrillation system and method includes an epicardial electrode for making electrical contact with the epicardium from a position within the pericardial space, an endocardial electrode for making electrical contact with the endocardium of the heart, and means for making electrical contact with the epicardial and endocardial electrodes. The endocardial electrode is inserted transvenously into the heart in conventional manner. The epicardial electrode is also inserted transvenously into the heart, through the heart wall, and into the pericardial space. No open chest surgery is required.
    Type: Grant
    Filed: October 30, 1989
    Date of Patent: March 12, 1991
    Assignee: Siemens-Pacesetter, Inc.
    Inventors: Donald M. Cohen, James R. Thacker
  • Patent number: 4991583
    Abstract: A pacemaker and a method of operation thereof are provided for configuring or operating a conventional pacemaker having a plurality of lead electrodes. Each lead can be independently configured for any combination of unipolar or bipolar, pacing and sensing. During a pacing mode of operation, a selected return electrode is switchably connected to the most positive battery potential, V.sub.DD. The return electrode of the packemaker, can selectively be either the pacemaker case or one or more ring electrodes. During a fast discharge time period, which occurs immediately subsequent to the delivery of a pacing pulse, the return electrode is disconnected from V.sub.DD and connected to the proximal side of a coupling capacitor through which the pacing pulse has passed. Also during this fast discharge time period, the proximal side of the coupling capacitor is switchable connected to the most negative battery potential, V.sub.SS.
    Type: Grant
    Filed: May 1, 1989
    Date of Patent: February 12, 1991
    Assignee: Siemens-Pacesetter, Inc.
    Inventor: Sergiu Silvian
  • Patent number: 4991578
    Abstract: A method and system for positioning a defibrillation electrode within the pericardial space of a mammal is disclosed which includes means for distending the pericardium from the heart by injecting a small volume of fluid into the pericardium. A needle having a lumen therethrough is inserted from a sub-xiphoid or other percutaneous position into the body tissue until a tip thereof punctures the distended pericardium at a selected location. A guide wire is inserted into the pericardium through the lumen of the needle, and while the guide wire remains in the pericardial space, the needle is removed. A sheath is introduced over the guide wire, with the aid of a dilator, and inserted into the tissue until one end thereof is positioned within the pericardium.
    Type: Grant
    Filed: April 4, 1989
    Date of Patent: February 12, 1991
    Assignee: Siemens-Pacesetter, Inc.
    Inventor: Donald M. Cohen
  • Patent number: 4991603
    Abstract: A method and system for positioning a defibrillation electrode about the heart includes means for placing the electrode in contact with epicardial or pericardial tissue from an inferior vena cava (IVC) access site. A small hole is made in the IVC at the selected access site. A defibrillation lead having the defibrillation electrode near its distal end is transvenously inserted through the IVC and out through the small hole into a chest cavity adjacent the heart. The electrode is then positioned so as to contact the desired cardiac tissue. If pericardial contact is to be made, the distal end of the lead, including the electrode, is looped around the pericardium. If epicardial contact is to be made, an additional small hole is made in the pericardium, and the distal end of the lead, including the electrode, is inserted through the additional hole into the pericardial space, and the electrode is positioned to contact the desired epicardial tissue.
    Type: Grant
    Filed: October 30, 1989
    Date of Patent: February 12, 1991
    Assignee: Siemens-Pacesetter, Inc.
    Inventors: Donald M. Cohen, Werner Hafelfinger
  • Patent number: 4989602
    Abstract: A non-programmable automatic implantable cardioverter/defibrillator (AICD) capable of providing programmable thresholds for triggering high energy stimulation pulse(s) from the AICD is coupled to an implantable programmable pacemaker which preferably includes bradycardia support and/or tachycardia support using low enery output pulses. When the low energy antitachycardia pulse(s) from the pacemaker fail to terminate a tachycardia, or whenever other various thresholds, as sensed by programmable sensing circuits of the pacemaker, are exceeded, the high enery pulses from the AICD may be selectively invoked by an AICD trigger circuit included within the pacemaker. Coupling between the AICD and pacemaker is by either a direct electrical connection, or by an indirect connection, such as through the use of narrow pulse sequences generated by the pacemaker which are of insufficient energy to invoke a cardiac response but are of sufficient energy to be sensed by the AICD sensing circuits.
    Type: Grant
    Filed: April 12, 1989
    Date of Patent: February 5, 1991
    Assignee: Siemens-Pacesetter, Inc.
    Inventors: Jason A. Sholder, Brian M. Mann
  • Patent number: 4980898
    Abstract: A self-oscillating burst mode transmitter transmits an integral number of cycles of a carrier signal in each transmission burst. Each burst commences at a peak value of the carrier signal and terminates at a peak value. The transmitter includes an L-C tank circuit comprising a transmitting coil (L1) connected to a capacitor (C4). The L-C tank circuit is selectively energized through a switching network (Q1, Q2, U1, U2) connected to a power source, causing the tank circuit to resonate at a prescribed frequency (f.sub.0). Selective energization of the tank circuit is achieved by the switching network as controlled by a peak voltage detection circuit (32, 34). The peak detection circuit senses when a peak voltage is present in the oscillatory waveform appearing across the coil of the resonating tank circuit. Power is switched off to the tank circuit at the conclusion of each transmission burst only when the oscillatory voltage waveform, as sensed by the peak detection circuit, is at a peak.
    Type: Grant
    Filed: August 8, 1989
    Date of Patent: December 25, 1990
    Assignee: Siemens-Pacesetter, Inc.
    Inventor: Sergiu Silvian
  • Patent number: 4979506
    Abstract: A communication system includes self-test means for automatically testing its performance. The communication system is adapted for use between an implantable device, such as a pacemaker, and an external device, such as the pacemaker's programmer. The communication system includes in the external device a transmitter circuit for transmitting an output signal through an antenna, and a receiver circuit for receiving an input signal through an antenna. A driver circuit controls the operation of the transmitter circuit. A microprocessor, connected to the driver circuit, controls the information content and timing of the transmitted output signal. A bandpass filter and AM demodulator process the input signal received through the receiver circuit. A multiplexer selectively allows one of a plurality of status signals from throughout the communication system within the external device, including the demodulated signal obtained from the AM demodulator, to be connected to the microprocessor.
    Type: Grant
    Filed: August 8, 1989
    Date of Patent: December 25, 1990
    Assignee: Siemens-Pacesetter, Inc.
    Inventor: Sergiu Silvian
  • Patent number: 4974589
    Abstract: An automatically adjustable blanking circuit and method of generating an adjustable blanking interval for use with a dual channel implantable pacemaker includes means for generating a basic blanking interval for a first channel of the pacemaker each time a stimulation pulse is generated on a second channel. The basic blanking interval includes a first absolute refractory portion and a second relative refractory portion. During the absolute refractory portion, the sensing circuits of the first channel are disabled. During the relative refractory portion, the sensing circuits of the first channel are enabled and any activity sensed in the first channel is considered to be crosstalk or noise and the basic blanking interval is retriggered. Retriggering of the basic blanking interval continues for so long as activity is sensed in the first channel during the relative refractory portion of each retriggered basic blanking interval, up to a maximum blanking interval.
    Type: Grant
    Filed: October 17, 1989
    Date of Patent: December 4, 1990
    Assignee: Siemens-Pacesetter, Inc.
    Inventor: Jason A. Sholder
  • Patent number: 4972438
    Abstract: A device for use as a self-oscillating Class D transmitter is disclosed which uses feedback to maintain the oscillation at the resonant frequency of the device, thereby optimizing the efficiency of operation and overcoming the frequency mismatching inherent in previously known transmitters. The device uses a series LC combination which is driven by a comparator and a tri-state logic driver, with a feedback loop using a differentiator used to switch the polarity of the square wave generator. The system thus self-oscillates at the resonant frequency of the capacitor and inductor, even when the inductance of the inductor is varied by the inductor coming into close proximity to another inductor.
    Type: Grant
    Filed: August 8, 1989
    Date of Patent: November 20, 1990
    Assignee: Siemens-Pacesetter, Inc.
    Inventor: Sergiu Silvian
  • Patent number: 4947407
    Abstract: A digital phase-locked looped generates a clock signal synchronized with a carrier signal modulated by amplitude shift keying (ASK). During periods when no carrier signal is present, the generated clock signal coasts at the frequency of the carrier signal most recently present, rather than trying to phase-lock on noise. A binary controlled digital oscillator generates the clock signal. A phase detector determines the difference between the phase of the carrier signal, when present, and the local clock signal. When the average amplitude of the carrier signal exceeds a prescribed threshold level, the phase detector output is sampled and passed to an integrator circuit, where the phase difference is integrated. The output of the integrator circuit is applied to a pulse generator, causing the pulse generator's duty cycle to change proportionally.
    Type: Grant
    Filed: August 8, 1989
    Date of Patent: August 7, 1990
    Assignee: Siemens-Pacesetter, Inc.
    Inventor: Sergiu Silvian
  • Patent number: 4944299
    Abstract: A high speed digital telemetry system (10) includes a transmitter (12) and a receiver (14), at least one of which is adapted for use in an implantable device. The transmitter includes a data encoder (14), modulator (16), transmitting coil (20), and transmitting coil drive circuit (18). The data encoder examines prescribed incoming data bits and prior encoded data bits, generating an encoded data stream (36) that includes a data transition only when a prescribed correlation is noted amongst the examined bits. The modulator modulates a carrier signal (34) with the encoded data stream, causing a phase reversal of the carrier at each data transition of the encoded data stream. The transmitting coil drive circuit applies the modulated carrier (38) to the transmitting coil. The receiver includes a receiving coil (22) and associated amplifier (24) and bandpass filter (26) for detecting the transmitted modulated carrier.
    Type: Grant
    Filed: August 8, 1989
    Date of Patent: July 31, 1990
    Assignee: Siemens-Pacesetter, Inc.
    Inventor: Sergiu Silvian
  • Patent number: 4944298
    Abstract: An atrial rate based programmable pacemaker including means for preventing the heart from being paced at an upper rate limit for prolonged periods of time is disclosed which paces the heart at a rate that follows or tracks the atrial rate up to the upper rate limit of the pacemaker, at which point the pacemaker stimulates the heart at the upper rate limit, but also continues to monitor the atrial rate. If the monitored atrial rate exceeds a second upper rate limit, a fast atrial arrhythmia or tachycardia condition is deemed to exist, and the pacemaker automatically switches from its existing mode of operation to an alternate mode of operation in an attempt to break or terminate the fast atrial condition. Alternate embodiments include using an external activity or physiological sensor to control the pacing rate in the new pacing mode, and the inclusion of means for periodically verifying that atrial sensing is occurring, and means for automatically adjusting the sensitivity of the atrial channel as required.
    Type: Grant
    Filed: May 23, 1989
    Date of Patent: July 31, 1990
    Assignee: Siemens-Pacesetter, Inc.
    Inventor: Jason A. Sholder
  • Patent number: 4940053
    Abstract: A device for use as a rate-responsive pacemaker is disclosed in which the pacing interval is controlled by the amount of energy contained in a raw signal generated by a suitable physiological sensor and processed by an energy converter to generate an output energy signal coupled to the pacemaker control circuits to adjust the pacing interval. The energy converter may be a rectifying amplifier and an integrating circuit, a voltage controlled oscillator whose frequency is measured over a suitable time interval using a time interval generator and a counter with the output of the counter being used by the control circuits of the pacemaker to vary its pacing interval, or means for measuring energy content of the raw signal and storing that measurement in memory and periodically processing it to alter the transfer characteristics of the rate-responsive pacemaker.
    Type: Grant
    Filed: January 25, 1989
    Date of Patent: July 10, 1990
    Assignee: Siemens-Pacesetter, Inc.
    Inventors: Brian M. Mann, John W. Poore
  • Patent number: 4940052
    Abstract: A rate-responsive pacemaker which includes a conventional programmable pulse generator, a physiological sensor, and a processor is disclosed which generates heart stimulation pulses on demand, or as otherwise programmed, as controlled by a rate control signal which is derived from the physiological sensor. The physiological sensor generates a raw signal which varies as a function of some physiological parameter, such as activity level to provide some indication of whether the heart rate should increase or decrease, and hence whether the pacemaker should change the rate at which pacing pulses are provided. The processor converts the raw signal to the sensor-indicated rate signal in accordance with a selectable transfer relationship which defines the sensor-indicated rate signal as a function of a set of discrete sensor level index signals.
    Type: Grant
    Filed: January 25, 1989
    Date of Patent: July 10, 1990
    Assignee: Siemens-Pacesetter, Inc.
    Inventors: Brian M. Mann, John W. Poore
  • Patent number: 4934366
    Abstract: A feedthrough connector for an implantable medical device, combines the connector function with the feedthrough function and eliminates the need for the cast epoxy connector previously used on such devices. The feedthrough connector includes a barrel assembly having open and closed ends. The open end of the assembly has an opening for receiving a slidably inserted electrical lead. The barrel assembly includes cylindrical metal conductive portions separated by cylindrical ceramic insulating portions. Spring contacts are mounted on the inside of the metal portions and are adapted to make electrical contact with the appropriate contacts of an electrical lead when the lead is inserted into the connector. The outer side of the metal portions are electrically connected to the appropriate electrical circuit within the housing, and the open end of the barrel assembly is bonded (welded) to the device housing so that the inside of the device can be hermetically sealed.
    Type: Grant
    Filed: September 19, 1989
    Date of Patent: June 19, 1990
    Assignee: Siemens-Pacesetter, Inc.
    Inventors: Buehl E. Truex, William H. Stutz, Jr.
  • Patent number: 4899750
    Abstract: A pacemaker lead analyzer for measuring impedance during standard operation of an implanted pacemaker. The analyzer makes separate measurements of lead impedance during each heart signal and each pacing pulse. A moving average of measured parameters is maintained and recurring deviations from the norms are noted in separate event counters for subsequent analysis of the noted events as possible indications of impending failure of an implanted lead.
    Type: Grant
    Filed: April 19, 1988
    Date of Patent: February 13, 1990
    Assignee: Siemens-Pacesetter, Inc.
    Inventor: Christer Ekwall
  • Patent number: 4884345
    Abstract: An adjustable template device for pacemaker ECG analysis is similar to a slide rule with a transparent window portion which can be laid over an ECG trace to aid in its analysis. A frame for the template has a back member and a cover member connected together with rivets, with the cover member having cutout portions through which various scales printed on the back portion can be seen. A series of movable transparent plastic sheets slide back and forth independently in the frame to allow measurement of time intervals on the ECG trace. Fiducial marks on the movable sheets indicate time intervals by their positions with respect to scales on the back member. AV, AE, MT, PVAR, and pacing intervals can all be set simultaneously on the template. A photocopy of the template overlying the ECG trace can be made to provide a permanent record.
    Type: Grant
    Filed: May 12, 1988
    Date of Patent: December 5, 1989
    Assignee: Siemens-Pacesetter, Inc.
    Inventor: Ronald J. Long
  • Patent number: 4884567
    Abstract: The improved transvenous implantation method of the present invention involves entering a vein of a patient, translating through the vein to the patient's cardium atrium, anchoring onto the atrial lateral wall, puncturing the atrial lateral wall and forming a hole therein, exiting the atrium through the hole to the pericardial space and inserting the object into the pericardial space. The present invention also includes a method for the transvenous repair of a wound in the atrial lateral wall.
    Type: Grant
    Filed: December 3, 1987
    Date of Patent: December 5, 1989
    Assignees: Dimed Inc., Siemens- Pacesetter, Inc.
    Inventors: Clyde D. Elliott, Donald M. Cohen