Abstract: Embodiments of the invention are directed methods that include a thymidine kinase deficient vaccinia virus. The methods include administering the vaccinia virus at increased viral concentrations. Further aspects of the invention include methods for inducing oncolysis or collapse of tumor vasculature in a subject having a tumor comprising administering to a subject at least 1×108 infectious viral particles of a TK-deficient, GM-CSF-expressing, replication-competent vaccinia virus vector sufficient to induce oncolysis of cells in the tumor.
Abstract: Embodiments of the invention are directed methods that include a thymidine kinase deficient vaccinia virus. The methods include administering the vaccinia virus at increased viral concentrations. Further aspects of the invention include methods for inducing oncolysis or collapse of tumor vasculature in a subject having a tumor comprising administering to a subject at least 1×108 infectious viral particles of a TK-deficient, GM-CSF-expressing, replication-competent vaccinia virus vector sufficient to induce oncolysis of cells in the tumor.
Abstract: The present invention relates to methods and compositions for use in inducing tumor-specific antibody mediated complement-dependent cytotoxic response in an animal having a tumor comprising administering to said animal a composition comprising a replication competent oncolytic virus wherein administration of the composition induces in the animal production of antibodies that mediate a CDC response specific to said tumor.
Type:
Grant
Filed:
February 8, 2018
Date of Patent:
October 8, 2019
Assignees:
SILLAJEN, INC, SILLAJEN BIOTHERAPEUTICS, INC.
Inventors:
David Kirn, John Bell, Caroline Breitbach, Anne Moon, Tae-Ho Hwang, Yu Kyoung Lee, Mi-kyung Kim
Abstract: Embodiments of the invention are directed methods that include a thymidine kinase deficient vaccinia virus. The methods include administering the vaccinia virus at increased viral concentrations. Further aspects of the invention include methods for inducing oncolysis or collapse of tumor vasculature in a subject having a tumor comprising administering to a subject at least 1×108 infectious viral particles of a TK-deficient, GM-CSF-expressing, replication-competent vaccinia virus vector sufficient to induce oncolysis of cells in the tumor.
Abstract: The present invention relates to methods and compositions for use in inducing tumor-specific antibody mediated complement-dependent cytotoxic response in an animal having a tumor comprising administering to said animal a composition comprising a replication competent oncolytic virus wherein administration of the composition induces in the animal production of antibodies that mediate a CDC response specific to said tumor.
Type:
Application
Filed:
February 8, 2018
Publication date:
August 2, 2018
Applicants:
SILLAJEN BIOTHERAPEUTICS, INC., SILLAJEN, INC.
Inventors:
David KIRN, John BELL, Caroline BREITBACH, Anne MOON, Tae-Ho HWANG, Yu Kyoung LEE, Mi-kyung KIM
Abstract: Embodiments of the invention are directed methods that include a thymidine kinase deficient vaccinia virus. The methods include administering the vaccinia virus at increased viral concentrations. Further aspects of the invention include methods for inducing oncolysis or collapse of tumor vasculature in a subject having a tumor comprising administering to a subject at least 1×108 infectious viral particles of a TK-deficient, GM-CSF-expressing, replication-competent vaccinia virus vector sufficient to induce oncolysis of cells in the tumor.
Abstract: The present invention relates to methods and compositions for use in inducing tumor-specific antibody mediated complement-dependent cytotoxic response in an animal having a tumor comprising administering to said animal a composition comprising a replication competent oncolytic virus wherein administration of the composition induces in the animal production of antibodies that mediate a CDC response specific to said tumor.
Type:
Grant
Filed:
January 4, 2012
Date of Patent:
March 20, 2018
Assignees:
SILLAJEN, INC., SILLAJEN BIOTHERAPEUTICS, INC.
Inventors:
David Kirn, John Bell, Caroline Breitbach, Anne Moon, Tae-Ho Hwang, Yu Kyoung Lee, Mi-kyung Kim
Abstract: The present invention concerns methods and compositions for the treatment of cancer and cancer cells using intravascular administration of a vaccinia virus. In some embodiments, methods and compositions involve a replicative vaccinia virus that encodes GM-CSF.
Abstract: Embodiments of the invention are directed methods that include a thymidine kinase deficient vaccinia virus. The methods include administering the vaccinia virus at increased viral concentrations. Further aspects of the invention include methods for inducing oncolysis or collapse of tumor vasculature in a subject having a tumor comprising administering to a subject at least 1×108 infectious viral particles of a TK-deficient, GM-CSF-expressing, replication-competent vaccinia virus vector sufficient to induce oncolysis of cells in the tumor.
Abstract: The present invention concerns methods and compositions for the treatment of cancer and cancer cells using intravascular administration of a vaccinia virus. In some embodiments, methods and compositions involve a replicative vaccinia virus that encodes GM-CSF.
Abstract: Embodiments of the invention are directed methods that include a thymidine kinase deficient vaccinia virus. The methods include administering the vaccinia virus at increased viral concentrations. Further aspects of the invention include methods for inducing oncolysis or collapse of tumor vasculature in a subject having a tumor comprising administering to a subject at least 1×108 infectious viral particles of a TK-deficient, GM-CSF-expressing, replication-competent vaccinia virus vector sufficient to induce oncolysis of cells in the tumor.
Abstract: The present invention concerns methods and compositions for the treatment of cancer and cancer cells using intravascular administration of a vaccinia virus. In some embodiments, methods and compositions involve a replicative vaccinia virus that encodes GM-CSF.
Abstract: Embodiments of the invention are directed methods that include a thymidine kinase deficient vaccinia virus. The methods include evaluating a tumor for reperfusion after treatment with vaccinia virus and administering an anti-angiogenic agent if reperfusion is detected.
Abstract: Embodiments of the invention are directed methods that include a thymidine kinase deficient vaccinia virus. The methods include administering the vaccinia virus at increased viral concentrations. Further aspects of the invention include methods for inducing oncolysis or collapse of tumor vasculature in a subject having a tumor comprising administering to a subject at least 1×108 infectious viral particles of a TK-deficient, GM-CSF-expressing, replication-competent vaccinia virus vector sufficient to induce oncolysis of cells in the tumor.
Abstract: The present invention concerns methods and compositions for the treatment of cancer and cancer cells using altered poxviruses, including a vaccinia virus that has been altered to generate a more effective therapeutic agent. Such poxviruses are engineered to be attenuated or weakened in their ability to affect normal cells. In some embodiments, methods and compositions involve poxviruses that possess mutations that result in poxviruses with diminished or eliminated capability to implement an antiviral response in a host. Poxviruses with these mutations in combination with other mutations can be employed for more effective treatment of cancer.