Abstract: Provided herein is a device and method for improved operating of cameras and light sources of a mobile automation apparatus. Light sources are operated to periodically provide illumination light for a camera operating according to a given exposure time and frequency, with a pulse duration having a respective frequency that is an integer multiple of the camera frequency, and higher than a threshold frequency where successive activations of the light sources are imperceptible. Furthermore, a light source paired with a camera is located at a distance from the paired camera that illuminates an object imaged by the paired camera, and where parasitic reflections from the paired light source are not reflected into the paired camera.
Abstract: A method of object detection includes obtaining a set of images depicting overlapping regions of an area containing a plurality of objects. Each image includes input object indicators defined by input bounding boxes, input confidence level values, and object identifiers. The method includes identifying candidate subsets of input object indicators in adjacent images. Each candidate subset has input overlapping bounding boxes in a common frame of reference, and a common object identifier. The method includes adjusting the input confidence levels for each input object indicator in the candidate subsets; selecting clusters of the input object indicators satisfying a minimum input confidence threshold, having a common object identifier, and having a degree of overlap satisfying a predefined threshold; and detecting an object by generating a single output object indicator for each cluster, the output object indicator having an output bounding box, an output confidence level value, and the common object identifier.
Abstract: A target is read in the presence of ambient light. A scan component scans a laser beam across the target. A detector assembly detects and converts return laser light from the target into an information signal bearing information related to the target, and concomitantly detects and converts the ambient light into an ambient light signal. The assembly includes a first photodetector for generating a first output signal comprised of the information and the ambient light signals, a detector lens for focusing and directing the return laser light substantially onto the first photodetector, and a second photodetector for generating a second output signal substantially comprised of the ambient light signal. Signal processing circuitry processes the output signals to determine a magnitude of the ambient light signal, and suppresses the ambient light signal when the determined magnitude of the ambient light signal at least equals a threshold.
Type:
Grant
Filed:
October 3, 2016
Date of Patent:
September 1, 2020
Assignee:
Symbol Technologies, LLC
Inventors:
Gary G. Schneider, James R. Giebel, Peter Fazekas, Vladimir Gurevich
Abstract: The present disclosure generally relates to the field of asset tracking via RFID. In an embodiment, the present disclosure describes a system that selectively deactivates at least some of the plurality of fixed RFID readers that are disposed within a venue based on a location determination of an active mobile RFID reader.
Type:
Grant
Filed:
November 29, 2017
Date of Patent:
September 1, 2020
Assignee:
Symbol Technologies, LLC
Inventors:
Richard J. Lavery, Russell Calvarese, Charles G. Lauria, Timothy B. Austin
Abstract: A color image of a target is captured by a color sensor in an imaging reader. A color image processing pipeline processes the captured color image with a plurality of color image processing components to display the image of a target with high fidelity. One or more of the components are bypassed to decode the image of a symbol target to prevent degradation of reader performance.
Abstract: A method in an imaging controller of correcting translucency artifacts in data representing one or more objects disposed on a shelf includes: obtaining a plurality of depth measurements captured by a depth sensor and corresponding to an area containing the shelf; obtaining (i) a definition of a plane containing edges of the shelf, (ii) a location in the plane of an upper shelf edge, and (iii) a location in the plane of a lower shelf edge adjacent to the upper shelf edge; generating a depth map containing, for each of a plurality of positions in the plane, a nearest object depth; detecting an upper object boundary in the depth map between the upper and lower support surface edges; updating each nearest object depth between the upper object boundary and the lower shelf edge to contain a depth of the upper object boundary; and storing the corrected depth map.
Type:
Grant
Filed:
April 5, 2018
Date of Patent:
August 11, 2020
Assignee:
Symbol Technologies, LLC
Inventors:
Raymond Phan, Richard Jeffrey Rzeszutek, Iaacov Coby Segall
Abstract: A stereo camera device with tilted fields of view is provided, which includes a pair of camera devices located such that respective fields of view (FOVs) of the pair of camera devices are tilted away from each other, and at least partially overlapping in a common working FOV. The device further includes a processor which receives respective images from each of the pair of camera devices, combines respective portions of the respective images corresponding to the common working FOV into stereo images.
Abstract: A method of radio frequency identification (RFID) tag bearing estimation comprises: at an RFID tag reader having a plurality of antenna elements, emitting a primary transmit beam; receiving a response signal from an RFID tag via the antenna elements; generating a first set of signal measurements corresponding to a first set of receive beam characteristics, based on a first partition of the response signal; generating a second set of signal measurements corresponding to a second set of receive beam characteristics, based on a second partition of the response signal; and combining the first and second sets of signal measurements, for selection of an estimated tag bearing for the RFID tag from the first and second receive beam characteristics.
Type:
Grant
Filed:
July 27, 2017
Date of Patent:
July 28, 2020
Assignee:
Symbol Technologies, LLC
Inventors:
Michael J. Koch, Guy P. Roberts, Joon Hwa Chun
Abstract: A method of detecting a back of a shelf for supporting objects includes: obtaining an image depicting a shelf having a shelf edge and a support surface extending from the shelf edge to a shelf back; decomposing the image into a plurality of patches; for each patch: generating a feature descriptor; based on the feature descriptor, assigning one of a shelf back classification and a non-shelf back classification to the patch; generating a mask corresponding to the image, the mask containing an indication of the classification assigned to each of the patches; and presenting the mask.
Type:
Grant
Filed:
May 1, 2017
Date of Patent:
July 28, 2020
Assignee:
Symbol Technologies, LLC
Inventors:
Raymond Phan, Yan Zhang, Richard Jeffrey Rzeszutek, Bo Fu
Abstract: A plurality of three-dimensional (3D) cameras is deployed about a zone through which freight is conveyed to a shipping container. The 3D cameras have sensors with fields of view over which a plurality of point clouds of voxels are captured from the freight. A server combines the point clouds to obtain a composite point cloud of the freight, encloses the composite point cloud with a bounding box having dimensions, and dimensions the freight from the dimensions of the bounding box. An optional scale weighs the freight while it is being dimensioned and moved through the zone.
Type:
Grant
Filed:
March 23, 2016
Date of Patent:
July 21, 2020
Assignee:
Symbol Technologies, LLC
Inventors:
Patrick Martin Brown, Paul Seiter, Charles B. Swope, Chinmay Nanda
Abstract: Embodiments of the preset invention include a barcode reader that comprises a housing having a handgrip portion and an upper body portion, a first printed circuit board (PCB) extending into the upper body portion, and an imaging module positioned within the upper body portion. In this instance, the imaging module includes an imaging system having an imager and an imaging lens assembly, the imaging system having a field of view with a central imaging axis passing through a window in the upper body portion and lying on a horizontal plane. The imaging module further includes an aiming light system configured to emit an aiming light pattern, the aiming light system offset from the imaging system along the horizontal plane. Furthermore, the components of the barcode reader are arranged such that the first PCB is positioned at an oblique angle relative to the central imaging axis.
Type:
Grant
Filed:
November 16, 2018
Date of Patent:
July 14, 2020
Assignee:
Symbol Technologies, LLC
Inventors:
Darran Michael Handshaw, Vladimir Gurevich, Igor Vinogradov, Mark D. Anderson
Abstract: A method and apparatus for receiving a depth frame from a depth sensor oriented towards an open end of a shipping container, the depth frame comprising a plurality of grid elements that each have a respective depth value, identifying one or more occlusions in the depth frame, correcting the one or more occlusions in the depth frame using one or more temporally proximate depth frames, and outputting the corrected depth frame for fullness estimation.
Type:
Grant
Filed:
December 22, 2015
Date of Patent:
July 14, 2020
Assignee:
Symbol Technologies, LLC
Inventors:
Yan Zhang, Jay J. Williams, Cuneyt M. Taskiran, Kevin J. O'Connell
Abstract: Embodiments of the present invention generally relate to the field of space dimensioning. In an embodiment, the present invention is a method of dimensioning a container bound by at least a first wall and a second wall opposite the first wall, the space being 3D and definable via height, width, and depth coordinates. The method includes: obtaining, a 3D image of at least a portion of the space; analyzing the image to determine a first and second equations defining first plane and second planes corresponding to the first and second walls; solving the first equation for a first coordinate value; solving the second equation for a second coordinate value, the first coordinate value and the second coordinate value being one of a width coordinate or a height coordinate; and computing a first distance based at least in part on the first coordinate value and the second coordinate value.
Type:
Grant
Filed:
December 22, 2017
Date of Patent:
June 30, 2020
Assignee:
Symbol Technologies, LLC
Inventors:
Adithya H. Krishnamurthy, Justin F. Barish
Abstract: Embodiments of the present invention are generally directed to estimating capacity usage of a container. In an embodiment, the present invention is a method of estimating a fullness of a container. The method includes: mounting an image capture apparatus proximate a container-loading area, the image capture apparatus operable to capture three-dimensional images; capturing, via the image capture apparatus, a three-dimensional image representative of a three-dimensional formation, the three-dimensional image having a plurality of points with three-dimensional point data including depth data; generating a histogram of the depth data from the three-dimensional image; and estimating the fullness of the container based at least in part on the histogram.
Type:
Grant
Filed:
December 22, 2017
Date of Patent:
June 23, 2020
Assignee:
Symbol Technologies, LLC
Inventors:
Justin F. Barish, Adithya H. Krishnamurthy
Abstract: A system and method for illuminating a volume with an illumination system generating an illumination intensity pattern that maintains irradiance at sufficient on and off axis irradiance levels to allow for accurate identification and measure of objects within a volume, such as within a vehicle trailer or shipping container, is provided.
Abstract: An RFID reader configures each of a plurality of antennas operating in the RFID reader to operate in one of a first state and a second state, configures each of the plurality of antennas to operate in a first session and a second session and to operate in opposite states in the first session and the second session, and configures adjacent antennas or adjacent groups of antennas to operate in opposite states in the first session and the second session. During operation, each of the plurality of antennas is configured to read an RFID tag within a range of the antenna when a state of the RFID tag for the session in which the antenna is configured to operate matches the state in which the antenna is configured to operate and to switch the state of the RFID tag to the opposite state for each session.
Abstract: A method for power management of a mobile device includes detecting whether a removable power source has been removed from the mobile device. In response to detecting that the power source has been removed, entering a hot swap mode for a first time period by deactivating a first component of the mobile device and maintaining, via a backup power source in the mobile device, a powered state of a second component of the mobile device and an application state of the mobile device. The method further includes, after the first time period, entering a suspend mode for a second time period by deactivating the second component and continuing to maintain the application state of the mobile device for the second time period.
Type:
Grant
Filed:
November 25, 2019
Date of Patent:
May 26, 2020
Assignee:
Symbol Technologies, LLC
Inventors:
Adrian J. Stagg, Steve Maddigan, Kevin Kar-Yin Chan, James Shoong-Leac Chen
Abstract: A device and method for merging lidar data is provided. Point cloud data is combined, via a lidar imaging controller, into a common point cloud data set, each set of point cloud data representing respective angular lidar scans of a region as at least two lidar devices are moved relative to the region of a shelf. The respective angular lidar scans from each lidar device occur at a non-zero and non-perpendicular angle to a movement direction. Common point cloud data set points are binned into a plane perpendicular to the movement direction of a mobile automation apparatus and extending from a virtual lidar position. The lidar imaging controller combines points among multiple planes.
Type:
Grant
Filed:
May 1, 2017
Date of Patent:
May 26, 2020
Assignee:
Symbol Technologies, LLC
Inventors:
Richard Jeffrey Rzeszutek, Bradley M. Scott