Patents Assigned to The Board of Trustees of the Leland Stanford Junior University
  • Publication number: 20190137425
    Abstract: A high-gain and low-noise negative feedback control (“feedback control”) system can detect charge transfer in quantum systems at room temperatures. The feedback control system can attenuate dissipative coupling between a quantum system and its thermodynamic environment. The feedback control system can be integrated with standard commercial voltage-impedance measurement system, for example, a potentiostat. In one aspect, the feedback control system includes a plurality of electrodes that are configured to electrically couple to a sample, and a feedback mechanism coupled to a first electrode of the plurality of electrodes. The feedback mechanism is configured to detect a potential associated with the sample via the first electrode. The feedback mechanism provides a feedback signal to the sample via a second electrode of the plurality of electrodes, the feedback signal is configured to provide excitation control of the sample at a third electrode of the plurality of electrode.
    Type: Application
    Filed: April 27, 2017
    Publication date: May 9, 2019
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Chaitanya Gupta, Ross Walker, Boris Murmann, Roger Howe
  • Publication number: 20190139435
    Abstract: Systems and methods in accordance with embodiments of the invention utilize technology to facilitate student question creation. Interactive platforms such as mobile phones or tablets can allow questions to be written, saved, and communicated electronically. In one embodiment, a method for collaboratively generating a question includes generating question data in response to input of a question and answer choices on a first device, sending the question data to a repository, sending the question data from the repository to a second device, displaying the question and answer choices on the second device, generating revised question data in response to input that changes the question, sending the revised question data to the repository, sending the revised question data to a third device, displaying the question and answer choices on the third device, receiving input of the selection of answer choices on the third device, and providing feedback whether the selection is correct.
    Type: Application
    Filed: October 2, 2018
    Publication date: May 9, 2019
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventor: Hong Suk Kim
  • Patent number: 10278744
    Abstract: Devices, systems and methods for dynamically stabilizing the spine are provided. The devices include an expandable spacer having an undeployed configuration and a deployed configuration, wherein the spacer has axial and radial dimensions for positioning between the spinous processes of adjacent vertebrae. The systems include one or more spacers and a mechanical actuation means for delivering and deploying the spacer. The methods involve the implantation of one or more spacers within the interspinous space.
    Type: Grant
    Filed: April 22, 2015
    Date of Patent: May 7, 2019
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Moti Altarac, Shawn Tebbe, Daniel H. Kim, J. Christopher Flaherty
  • Patent number: 10283327
    Abstract: An apparatus for generating a flow of reactive gas for decontaminating a material, surface or area, comprises a first electrode member comprising a first plurality of conductive surfaces and a second electrode member comprising a second plurality of conductive surfaces. The second electrode member is arranged in spaced relationship with the first electrode member to define a reactor channel. The conductive surfaces are exposed to the reactor channel so as to form air gaps between the first plurality of conductive surfaces and the second plurality of conductive surfaces. An air blower generates a flow of air through the reactor channel.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: May 7, 2019
    Assignees: The Board of Trustees of the Leland Stanford Junior University, CentraleSupélec
    Inventors: Christophe O. Laux, Johan O. Andreasson, Luke C. Raymond, Diane Rusterholtz-Duval, David Pai, Deanna Lacoste, Florent Sainct, Sebastien Mannai, Florian Girschig, Pierpaolo Toniato, Erwan Pannier, Augustin Tibère-Inglesse
  • Patent number: 10284762
    Abstract: A system for guidance of an imaging device may include a handheld imaging device, a multidirectional feedback device, and a control unit in communication with the multidirectional feedback device and the handheld imaging device. The control unit may be configured to receive a target location, determine an initial position and pose of the handheld imaging device, calculate a position and pose deviation relative to said initial position and pose, translate said position and pose deviation into control data, and transmit said control data to the multidirectional feedback device, wherein the multidirectional feedback device uses control data to provide an operator with feedback to guide the handheld imaging device towards the target.
    Type: Grant
    Filed: October 27, 2014
    Date of Patent: May 7, 2019
    Assignees: Clear Guide Medical, Inc., The Board of Trustees of the Leland Stanford Junior University
    Inventors: Philipp Jakob Stolka, Pezhman Foroughi, Matthew C. Rendina, Gregory Donald Hager, Allison Mariko Okamura
  • Patent number: 10278929
    Abstract: Disclosed herein are compounds and compositions thereof which find use in increasing stability of TTR tetramers reducing its tendency to misfold and form aggregates. Also provided herein are methods for using these compounds and compositions for increasing stability of TTR and thereby decreasing aggegate formation by TTR. Also disclosed herein are methods to screen for candidate compounds that increase stability of TTR. Also disclosed herein are heterobifunctional compounds that include a TTR binding compound connected to a targeting moiety via a linker, for use in disrupting PPis of a target protein.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: May 7, 2019
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Isabella A. Graef, Mamoun M. Alhamadsheh
  • Patent number: 10284356
    Abstract: A wireless communication device includes, in part, an analog interference cancellation circuit and a controller. The analog cancellation circuit includes a multitude of delay paths each including a delay element and a variable attenuator. The controller dynamically varies the attenuation level of each of the variable attenuators in accordance with the frequency response characteristic of that attenuator to remove a portion of a self-interference signal present in a signal received by the device. The device measures the frequency response characteristic of the communication channel, used in determining the attenuation levels, via one or more preamble symbols. A second portion of the self-interference signal is removed by the device using a multitude of samples of a transmitted signal and a multitude of samples of a signal to be transmitted.
    Type: Grant
    Filed: August 11, 2014
    Date of Patent: May 7, 2019
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Dinesh Bharadia, Sachin Katti, Emily McMilin, Mayank Jain, Jung Il Choi, Kannan Srinivasan
  • Patent number: 10273510
    Abstract: Described here is a method for increasing the transfer of a gas substrate in microbial fermentation, comprising incubating an emulsion comprising an oil phase and an aqueous phase droplet dispersed in the oil phase, and supplying the gas substrate to the oil phase, wherein the aqueous phase droplet comprises a microorganism, and wherein the emulsion is stabilized by a surfactant or an amphiphilic particle that is adsorbed to an interface of the oil phase and the aqueous phase. Also described is an emulsion for microbial fermentation, comprises an oil phase and an aqueous phase droplet dispersed in the oil phase, wherein the aqueous phase droplet comprises a microorganism, wherein the emulsion comprises a gas substrate externally-supplied to the oil phase, and wherein the emulsion is stabilized by a surfactant or an amphiphilic particle that is adsorbed to an interface of the oil phase and the aqueous phase.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: April 30, 2019
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Sindy Tang, Craig Criddle, Jaewook Myung, Minkyu Kim
  • Patent number: 10272384
    Abstract: A sorbent in the form of a layered, non-porous perovskite is provided, wherein the sorbent can include parallel, alternating layers of an organic layer, including an ordered array of organic moieties capable of reacting with a gaseous halogen, and an inorganic layer, including a metal-halide sheet. Furthermore, each organic layer can be sandwiched between inorganic layers. Methods for capturing one or more halogens from a gas stream are also provided, wherein the methods can include contacting a gas stream with a sorbent in the form of a layered, non-porous perovskite, wherein the sorbent can include parallel, alternating layers of an organic layer, including an ordered array of organic moieties capable of reacting with a gaseous halogen, and an inorganic layer, including a metal-halide sheet. One or more halogens in the gas stream can react with either alkyne groups or alkene groups found in the organic layer of the sorbent.
    Type: Grant
    Filed: September 5, 2014
    Date of Patent: April 30, 2019
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Hemamala I. Karunadasa, Diego Solis-Ibarra
  • Patent number: 10272427
    Abstract: Techniques are provided for a completely programmable fluidic manipulation without requiring any external control elements or electricity. A chip includes multiple microfluidic channels separated from an outside of the chip by an outer flexible substrate. An apparatus includes a plurality of actuators rotatably connected to a support structure with a recess for receiving the chip. Each actuator includes a plurality of teeth protruding outward, and is positioned so that at least in some angle of rotation a tooth of the actuator extends sufficiently into the recess to compress a microfluidic channel in a chip disposed in the recess. An optional punch card guide is included for guiding a card to contact the actuators. A system or kit includes a punch card on which is formed a plurality of punch features, each configured to engage a tooth of an actuator. Different microfluidic protocols are executed by simply changing the punch card.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: April 30, 2019
    Assignee: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Manu Prakash, George Korir
  • Publication number: 20190120919
    Abstract: Systems and methods for mapping neuronal circuitry in accordance with embodiments of the invention are illustrated. One embodiment includes a method for generating a neuronal shape graph, including obtaining functional brain imaging data from an imaging device, where the functional brain imaging data includes a time-series of voxels describing neuronal activation over time in a patient's brain, lowering the dimensionality of the functional brain imaging data to a set of points, where each point represents the brain state at a particular time in the timeseries, binning the points into a plurality of bins, clustering the binned points, and generating a shape graph from the clustered points, where nodes in the shape graph represent a brain state and edges between the nodes represent transitions between brain states.
    Type: Application
    Filed: October 25, 2018
    Publication date: April 25, 2019
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventor: Manish Saggar
  • Patent number: 10267690
    Abstract: A capacitive force sensor is provided that includes a first support layer and a second support layer, a dielectric layer disposed between the first support layer and the second support layer, where the dielectric layer is a non-conductive elastomer that is incompressible in the a normal direction and deflects in a shear direction, a layer of parallel conductive traces disposed between and bonded to the dielectric layer and the first support layer, and a conductive layer of parallel shear channel traces having at least two distinct channels disposed between and bonded to the dielectric layer and the second support layer, where the parallel conductive traces and the parallel shear channel traces are locally parallel to each other and provide capacitive shear force measurement sensitivity while rejecting normal forces, where the normal force measurement is decoupled from the shear force measurement.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: April 23, 2019
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Xin Alice Wu, John V Ulmen, Mark R. Cutkosky
  • Patent number: 10264974
    Abstract: Disclosed are methods for imaging lumen-forming structures such as blood vessels using near-infrared fluorescence in the NIR-II region of 1000-1700 nm. The fluorescence is created by excitation of solubilized nano-structures that are delivered to the structures, such as carbon nanotubes, quantum dots or organic molecular fluorophores attached to hydrophilic polymers. These nanostructures fluoresce in the NIR-II region when illuminated through the skin and tissues. Fine anatomical vessel resolution down to ?30 ?m and high temporal resolution up to 5-10 frames per second is obtained for small-vessel imaging with up to 1 cm penetration depth in mouse hind limb, which compares favorably to tomographic imaging modalities such as CT and MRI with much higher spatial and temporal resolution, and compares favorably to scanning microscopic imaging techniques with much deeper penetration.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: April 23, 2019
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Guosong Hong, Jerry Chung-yu Lee, Ngan Fong Huang, John P. Cooke, Hongjie Dai
  • Patent number: 10267802
    Abstract: Cellular markers indicating a poor prognosis for ovarian cancer patients are disclosed. In particular, the invention relates to methods utilizing the frequency of a subset of cells in ovarian tumor tissue expressing vimentin, cMyc, or HE4, or any combination thereof, to predict an ovarian cancer patient will relapse.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: April 23, 2019
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Jonathan Berek, Wendy Fantl, Veronica Gonzalez, Garry P. Nolan, Nikolay Samusik
  • Patent number: 10264958
    Abstract: A sensor-equipped laryngoscope may be used in a system and method for quantifying intubation performance. The level of experience of health care professionals (HCPs) plays a role in the application of force and torque applied to the laryngoscope during endotracheal intubation on an airway simulator, such as a manikin or animal model (e.g., a ferret). A sensor-equipped laryngoscope may provide data that differentiates the mechanics applied by subject matter experts (SMEs) (e.g., neonatologists) from those by novices or trainees during intubation, particularly on infant or neonatal airway simulators. A laryngoscope may be equipped with one or more sensors (e.g., force/torque sensors, accelerometers, and gyroscopes) to record force, torque, and/or three-dimensional motion during endotracheal intubation. The sensor-equipped laryngoscope may then be used to record intubation mechanics (e.g., during an infant airway simulated intubation) for both SMEs and trainees.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: April 23, 2019
    Assignees: University of New Hampshire, The Board of Trustees of the Leland Stanford Junior University
    Inventors: Paula L. McWilliam, Brian J. King, Mark Scott Granoff, Louis Patrick Halamek
  • Patent number: 10259922
    Abstract: Aspects of the invention include methods for modifying a surface of a non-porous hydrophobic polymer substrate having a backbone containing electrophilic linkages. In practicing methods according to certain embodiments, a liquid composition having a nucleophilic reagent and a catalyst is contacted with the surface of the non-porous hydrophobic polymer substrate and maintained in contact with the surface of the polymer substrate in a manner sufficient to convert at least a portion of the surface from hydrophobic to hydrophilic while retaining the mechanical and optical properties of the polymer substrate. Substrates, including containers, having one or more hydrophilic surfaces and kits suitable for practicing the subject methods are also described.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: April 16, 2019
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Richard N. Zare, Samuel Kim, Raffick Amid Razzakk Bowen
  • Patent number: 10261046
    Abstract: Disclosed are improved methods and structures for electrochemical sensors that may advantageously sense/detect chemical species including pollutants and/or energetics in a gaseous phase. Sensors according to the present disclosure may advantageously be fabricated using large scale microfabrication techniques and materials.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: April 16, 2019
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Beth L. Pruitt, Thomas Jaramillo, Tom Larsen, Frédéric Loizeau, Pierre-Alexandre Gross
  • Patent number: 10258389
    Abstract: Devices, systems and methods for dynamically stabilizing the spine are provided. The devices include an expandable spacer or member having an unexpanded configuration and an expanded configuration, wherein the expandable member in an expanded configuration has a size, volume and/or shape configured for positioning between the spinous processes of adjacent vertebrae in order to distract the vertebrae relative to each other. The systems include one or more expandable members and a mechanical actuation means for expanding the expandable member. The methods involve the implantation of one or more devices or expandable spacers.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: April 16, 2019
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventor: Daniel H. Kim
  • Patent number: 10261076
    Abstract: Small molecule analytes (less than 1000 Daltons) in a fluid sample are detected using a competitive assay in a magnetic biosensor. The fluid sample is added to a biosensor detection chamber together with detection probes and magnetic tags which bind to the detection probes. The magnetic biosensor is functionalized with a capture probe that shares an epitope with the analytes, and the detection probe is capable of binding the epitope shared by the analytes and the capture probe, so that the presence of the analyte prevents detection probes (and magnetic tags) from binding to the biosensor. By measuring the binding of the magnetic tags to the magnetic biosensor, an amount of analytes in the solution is determined.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: April 16, 2019
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Tyler O'Brien Shultz, Jung-Rok Lee, Shan X. Wang
  • Patent number: 10261298
    Abstract: Disclosed are methods and devices for confocal microscopy in the near-infrared. wavelength. The device uses a near-infrared (NIR) light producing source such as laser; optical components designed to reflect and transmit NIR from a sample; and an NIR detector coupled to a computer for constructing a focal plane image from a raster scan. The detector may be a photodiode or photo-multiplier tube for detecting fluorescence signals in the NIR (800-1700 nm) wavelength range using a variety of NIR-I (800-1000 nm) and NIR-II (1000-1700 nm) dyes and nanomaterials. An imaging method is described using the NIR-confocal microscope for slice by slice 3D imaging of biological tissues throughout a thickness up to, for example, 5 mm in the NIR-II window. The reduced scattering in NIR-II allows for tissue penetration up to about 5-10 mm, superior to ˜0.2 mm afforded by conventional imaging.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: April 16, 2019
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Guosong Hong, Alexander Antaris, Shuo Diao, Hongjie Dai