Patents Assigned to The Brigham & Women's Hospital, Inc.
  • Patent number: 11612639
    Abstract: Methods and compositions for rejuvenating skeletal muscle stem cells are disclosed.
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: March 28, 2023
    Assignees: President and Fellows of Harvard College, The Brigham and Women's Hospital, Inc.
    Inventors: Amy J. Wagers, Richard T. Lee
  • Patent number: 11607390
    Abstract: Self-righting articles, such as self-righting capsules for administration to a subject, are generally provided. In some embodiments, the self-righting article may be configured such that the article may orient itself relative to a surface. The self-righting articles described herein may comprise one or more tissue engaging surfaces configured to engage with a surface. In some embodiments, the self-righting article may have a particular shape and/or distribution of density (or mass) which, for example, enables the self-righting behavior of the article. In some embodiments, the self-righting article may comprise a tissue interfacing component and/or a pharmaceutical agent (e.g., for delivery of the active pharmaceutical agent to a location internal of the subject). In some cases, upon contact of the tissue with the tissue engaging surface of the article, the self-righting article may be configured to release one or more tissue interfacing components.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: March 21, 2023
    Assignees: Massachusetts Institute of Technology, Novo Nordisk A/S, The Brigham and Women's Hospital, Inc.
    Inventors: Alex G. Abramson, Morten Revsgaard Frederiksen, Brian Jensen, Mikkel Oliver Jespersen, Carlo Giovanni Traverso
  • Patent number: 11596605
    Abstract: The present application provides a method of making a particle comprising (i) obtaining a first solution comprising a negatively charged polysaccharide; (ii) obtaining a second solution comprising a positively charged polysaccharide; and (iii) mixing the first solution and the second solution to obtain a suspension comprising the particle. The present application also provides a method of making a therapeutic particle, comprising: (i) obtaining a solution comprising a therapeutic protein; (ii) obtaining a first suspension comprising the particle comprising a negatively charged polysaccharide and a positively charged polysaccharide, and (iii) mixing the solution of the therapeutic protein and the first suspension to obtain a second suspension comprising the therapeutic particle. The present application also provides particles (e.g.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: March 7, 2023
    Assignee: The Brigham and Women's Hospital, Inc.
    Inventors: Joseph Loscalzo, Ying-Yi Zhang
  • Patent number: 11597913
    Abstract: In some aspects and embodiments, the invention provides methods for making hematopoietic stem cells, including for HSCT. The method comprises providing a cell population comprising hemogenic endothelial (HE) or endothelial cells, and increasing activity or expression of DNA (cytosine-5-)-methyltransferase 3 beta (Dnmt3b) and/or GTPase IMAP Family Member 6 (Gimap6) in the HE and/or endothelial cells under conditions sufficient for stimulating formation of HSCs.
    Type: Grant
    Filed: May 31, 2022
    Date of Patent: March 7, 2023
    Assignee: The Brigham and Women's Hospital, Inc.
    Inventor: Dhvanit I. Shah
  • Patent number: 11592453
    Abstract: Disclosed herein is a method of providing a metabololipidomic profile and SPM signature on the progress of the innate host defense response following blood clotting. The method can include the step of taking one or more measurements in a patient's blood sample, wherein the sample is obtained during the time-course of clotting or coagulation or following clotting or coagulation, of pro-thrombotic and pro-inflammatory mediators (eicosanoids) and specialized pro-resolving mediators SPMs. From these measurements, a personalized metabololipidomic profile can be obtained. By comparing the measurement to that taken from normal or reference blood, a comparison profile can be developed. The profile comparison profile can then be used to make a medical or therapeutic decision.
    Type: Grant
    Filed: November 22, 2017
    Date of Patent: February 28, 2023
    Assignee: The Brigham and Women's Hospital, Inc.
    Inventors: Charles N. Serhan, Nan Chiang, Paul Norris
  • Patent number: 11590225
    Abstract: Provided herein are nanoparticle compositions (e.g., nanoparticle compositions comprising high atomic number ions) that are useful for imaging diseases in a subject as well as radiosensitizing a disease in a subject (e.g., radiosensitizing a cancer in the subject). Methods of imaging a subject, methods of treating cancer, and processes of preparing the nanoparticle compositions are also provided.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: February 28, 2023
    Assignees: The Brigham and Women's Hospital, Inc., NH TherAguix, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique
    Inventors: Ross Berbeco, Eloise Thomas, Francois Lux, Olivier Tillement, Alexandre Detappe, Geraldine Le Duc
  • Patent number: 11591300
    Abstract: Provided herein are methods and compositions related to a method of stimulating the immune system in a subject in need thereof by administering an agent that increases the level or activity of indoleamine 2,3-dioxygenase (IDO1) and/or aryl hydrocarbon receptor (Ahr).
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: February 28, 2023
    Assignee: The Brigham and Women's Hospital, Inc.
    Inventors: Richard S. Blumberg, Shankar S. Iyer, Amit Ghandi, Amadeu Llebaria
  • Publication number: 20230050912
    Abstract: Self-righting articles, such as self-righting capsules for administration to a subject, are generally provided. In some embodiments, the self-righting article may be configured such that the article may orient itself relative to a surface (e.g., a surface of a tissue of a subject). The self-righting articles described herein may comprise one or more tissue engaging surfaces configured to engage (e.g., interface with, inject into, anchor) with a surface (e.g., a surface of a tissue of a subject). In some embodiments, the self-righting article may have a particular shape and/or distribution of density (or mass) which, for example, enables the self-righting behavior of the article. In some embodiments, the self-righting article may comprise a tissue interfacing component and/or a pharmaceutical agent (e.g., for delivery of the active pharmaceutical agent to a location internal of the subject).
    Type: Application
    Filed: May 27, 2022
    Publication date: February 16, 2023
    Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc., Novo Nordisk A/S
    Inventors: Carlo Giovanni Traverso, Alex G. Abramson, Ester Caffarel Salvador, Niclas Roxhed, Minsoo Khang, Taylor Bensel, Robert S. Langer, Jorrit Jeroen Water, Morten Revsgaard Frederiksen, Bo Uldall Kristiansen, Mikkel Oliver Jespersen, Mette Poulsen, Peter Herskind, Brian Jensen
  • Patent number: 11579084
    Abstract: The invention provides novel non-invasive in vitro methods for assessing the metabolic condition of oocytes and/or embryos with fluorescence lifetime imaging microscope, that can be used, for example, in assessment of oocytes and embryos in assisted reproductive technologies.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: February 14, 2023
    Assignees: President and Fellows of Harvard College, The Brigham and Women's Hospital, Inc.
    Inventors: Catherine Racowsky, Manqi Deng, Daniel Needleman
  • Patent number: 11576860
    Abstract: Drug delivery articles, resident articles, and retrieval systems e.g., for gram-level dosing, are generally provided. In some embodiments, the articles are configured for transesophageal administration, transesophageal retrieval, and/or gastric retention to/in a subject. In certain embodiments, the article includes dimensions configured for transesophageal administration with a gastric resident system. In some cases, the article may be configured to control drug release e.g., with zero-order drug kinetics with no potential for burst release for weeks to months. In some embodiments, the articles described herein comprise biocompatible materials and/or are safe for gastric retention. In certain embodiments, the article includes dimensions configured for transesophageal retrieval. In some cases, the articles described herein may comprise relatively large doses of drug (e.g., greater than or equal to 1 gram).
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: February 14, 2023
    Assignees: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Carlo Giovanni Traverso, Robert S. Langer, Malvika Verma, Niclas Roxhed, Feyisope Eweje, Macy Castaneda
  • Publication number: 20230039421
    Abstract: Residence structures, systems, and related methods are generally provided. Certain embodiments comprise administering (e.g., orally) a residence structure to a subject (e.g., a patient) such that the residence structure is retained at a location internal to the subject for a particular amount of time (e.g., at least about 24 hours) before being released. The residence structure may be, in some cases, a gastric residence structure. In some embodiments, the structures and systems described herein comprise one or more materials configured for high levels of active substances (e.g., a therapeutic agent) loading, high active substance and/or structure stability in acidic environments, mechanical flexibility and strength in an internal orifice (e.g., gastric cavity), easy passage through the GI tract until delivery to at a desired internal orifice (e.g., gastric cavity), and/or rapid dissolution/degradation in a physiological environment (e.g., intestinal environment) and/or in response to a chemical stimulant (e.
    Type: Application
    Filed: June 9, 2022
    Publication date: February 9, 2023
    Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Andrew Bellinger, Shiyi Zhang, Carlo Giovanni Traverso, Robert S. Langer, Stacy Mo, Tyler Grant, Mousa Jafari, Dean Liang Glettig, Angela DiCiccio, Lowell L. Wood, JR., Philip A. Eckhoff
  • Patent number: 11574741
    Abstract: The systems and methods described herein determine metrics of cardiac or vascular performance, such as cardiac output, and can use the metrics to determine appropriate levels of mechanical circulatory support to be provided to the patient. The systems and methods described determine cardiac performance by determining aortic pressure measurements (or other physiologic measurements) within a single heartbeat or across multiple heartbeats and using such measurements in conjunction with flow estimations or flow measurements made during the single heartbeat or multiple heartbeats to determine the cardiac performance, including determining the cardiac output. By utilizing a mechanical circulatory support system placed within the vasculature, the need to place a separate measurement device within a patient is reduced or eliminated. The system and methods described herein may characterize cardiac performance without altering the operation of the heart pump (e.g., without increasing or decreasing pump speed).
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: February 7, 2023
    Assignees: Abiomed, Inc., Massachusetts Institute of Technology, The Brigham and Women's Hospital Inc.
    Inventors: Qing Tan, Ahmad El Katerji, Noam Josephy, Elazer R. Edelman, Brian Yale Chang, Steven Keller, Sonya Sanat Bhavsar
  • Patent number: 11566214
    Abstract: Systems and methods generating physiologic models that can produce functional biological substances are provided. In some aspects, a system includes a substrate and a first and second channel formed therein. The channels extend longitudinally and are substantially parallel to each other. A series of apertures extend between the first channel and second channel to create a fluid communication path passing through columns separating the channels that extends further along the longitudinal dimension than other dimensions. The system also includes a first source configured to selectively introduce into the first channel a first biological composition at a first channel flow rate and a second source configured to selectively introduce into the second channel a second biological composition at a second channel flow rate, wherein the first channel flow rate and the second channel flow rate create a differential configured to generate physiological shear rates within a predetermined range in the channels.
    Type: Grant
    Filed: February 17, 2020
    Date of Patent: January 31, 2023
    Assignees: BRIGHAM AND WOMEN'S HOSPITAL, INC., PRESIDENT AND FELLOWS OF HARVARD COLLEGE, VILNIUS UNIVERSITY
    Inventors: Jonathan N. Thon, Joseph E. Italiano, Linas Mazutis, David A. Weitz
  • Patent number: 11567086
    Abstract: The present disclosure provides a system comprising a communication interface and computer for assigning a label to the biomolecule fingerprint, wherein the label corresponds to a biological state. The present disclosure also provides a sensor arrays for detecting biomolecules and methods of use. In some embodiments, the sensor arrays are capable of determining a disease state in a subject.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: January 31, 2023
    Assignee: THE BRIGHAM AND WOMEN'S HOSPITAL, INC.
    Inventors: Omid Farokhzad, Morteza Mahmoudi, Claudia Corbo
  • Publication number: 20230026342
    Abstract: Malignant tumors that are resistant to conventional therapies represent significant therapeutic challenges. An embodiment of the present invention provides a new generation regulatable fusogenic oncolytic herpes simplex virus-1 that is more effective at selective killing target cells, such as tumor cells. In various embodiments presented herein, the oncolytic virus described herein is suitable for treatment of solid tumors, as well as other cancers.
    Type: Application
    Filed: November 21, 2019
    Publication date: January 26, 2023
    Applicant: THE BRIGHAM AND WOMEN'S HOSPITAL, INC.
    Inventor: Feng YAO
  • Patent number: 11560545
    Abstract: Provided are methods of controlling disassociation of cells from a carrier, compositions, and methods of collecting cells. The methods of controlling disassociation of cells from a carrier may include contacting a polymeric carrier with one or more digesting agents to disassociate at least a portion of a plurality of cells from the polymeric carrier. The polymeric carrier may be crosslinked with a crosslinker including at least one of a redox sensitive moiety, a UV light sensitive moiety, a pH sensitive moiety, and a temperature sensitive moiety.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: January 24, 2023
    Assignees: Lonza Walkersville Inc., The Brigham and Women's Hospital, Inc., Massachusetts Institute of Technology
    Inventors: Yi Zhang, Natalie Artzi, Kui Wang, Eytan Abraham, Yonatan Levinson
  • Patent number: 11555006
    Abstract: New host-protective molecules containing conjugated triene and diene double bonds with each carrying a 13-carbon position alcohol and were derived from n-3 docosapentaenoic acid (DPA, C22:5) were produced in neutrophil-endothelial co-cultures, and they are present in human and mouse tissues after sterile inflammation or infection. These compounds, termed 13-series resolvins (RvT), demonstrated potent protective actions increasing mice survival during Escherichia coli infections. Their biosynthesis during neutrophil-endothelial cell interactions was initiated by endothelial cyclooxygenase-2 (COX-2) and increased by atorvastatin via S-nitrosylation of COX-2. Atorvastatin and RvT were additive in E. coli infections in mice where they accelerated resolution of inflammation and increased survival >60%. Results documented novel host protective molecules in bacterial infections, namely RvT, derived from n-3 DPA via transcellular biosynthesis and increased by atorvastatin.
    Type: Grant
    Filed: September 23, 2019
    Date of Patent: January 17, 2023
    Assignee: The Brigham and Women's Hospital, Inc.
    Inventors: Jesmond Dalli, Nan Chiang, Charles N. Serhan
  • Patent number: 11547667
    Abstract: The present invention provides compositions and systems for delivery of nanocarriers to cells of the immune system. The invention provides vaccine nanocarriers capable of stimulating an immune response in T cells and/or in B cells, in some embodiments, comprising at least one immunomodulatory agent, and optionally comprising at least one targeting moiety and optionally at least one immunostimulatory agent. The invention provides pharmaceutical compositions comprising inventive vaccine nanocarriers. The present invention provides methods of designing, manufacturing, and using inventive vaccine nanocarriers and pharmaceutical compositions thereof. The invention provides methods of prophylaxis and/or treatment of diseases, disorders, and conditions comprising administering at least one inventive vaccine nanocarrier to a subject in need thereof.
    Type: Grant
    Filed: August 19, 2019
    Date of Patent: January 10, 2023
    Assignees: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, THE BRIGHAM AND WOMEN'S HOSPITAL, INC., PRESIDENT AND FELLOWS OF HARVARD COLLEGE, THE CHILDREN'S MEDICAL CENTER CORPORATION
    Inventors: Ulrich H. von Andrian, Omid C. Farokhzad, Robert S. Langer, Tobias Junt, Elliott Ashley Moseman, Liangfang Zhang, Pamela Basto, Matteo Iannacone, Frank Alexis
  • Patent number: 11547347
    Abstract: Improvements in ingestible electronics with the capacity to sense physiologic and pathophysiologic states have transformed the standard of care for patients. Yet despite advances in device development, significant risks associated with solid, non-flexible gastrointestinal transiting systems remain. Here, we disclose an ingestible, flexible piezoelectric device that senses mechanical deformation within the gastric cavity. We demonstrate the capabilities of the sensor in both in vitro and ex vivo simulated gastric models, quantified its key behaviors in the GI tract by using computational modeling, and validated its functionality in awake and ambulating swine. Our piezoelectric devices can safely sense mechanical variations and harvest mechanical energy inside the gastrointestinal tract for diagnosing and treating motility disorders and for monitoring ingestion in bariatric applications.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: January 10, 2023
    Assignees: Massachusetts Institute of Technology, The Brigham & Women's Hospital, Inc.
    Inventors: Canan Dagdeviren, Carlo Giovanni Traverso, Robert S. Langer
  • Patent number: 11548011
    Abstract: The disclosure describes systems and methods for separating a plurality of molecular entities with differing densities. The system includes: a pair of magnetic poles of like polarity to provide a magnetic field; and a container holding the plurality of molecular entities in a fluid medium comprising nanoparticles that substantially change a magnetic susceptibility of the fluid medium such that, when the container is placed inside the magnetic field, sufficient gradients in an effective density of the fluid medium are generated inside the container to levitate the plurality of molecular entities to respective layers within the container, each respective layer corresponding to a respective density.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: January 10, 2023
    Assignee: The Brigham and Women's Hospital, Inc.
    Inventor: Morteza Mahmoudi