Patents Assigned to The Government of the United States of America, as represented the Secretary of the Navy
  • Patent number: 10771176
    Abstract: A communication system includes a repetitive orthogonal frequency-division multiplexing (“ROFDM”) transmitter communicating with an ROFDM receiver. The ROFDM transmitter includes an ROFDM modulator, which includes a K-point Fast Fourier Transform receiving a block of time-domain data symbols and generating an initial orthogonal frequency-division multiplexing symbol. The initial orthogonal frequency-division multiplexing symbol is based on a block of frequency-domain data symbols corresponding to the block of time-domain data symbols. The initial orthogonal frequency-division multiplexing symbol includes an ending part. The ROFDM modulator includes an orthogonal frequency-division multiplexing symbol repeater generating a repetitive orthogonal frequency-division multiplexing symbol by repeatedly reproducing the initial orthogonal frequency-division multiplexing symbol.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: September 8, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventor: Zhiqiang Liu
  • Patent number: 10763500
    Abstract: An article having a continuous network of zinc and a continuous network of void space interpenetrating the zinc network. The zinc network is a fused, monolithic structure. A method of: providing an emulsion having a zinc powder and a liquid phase; drying the emulsion to form a sponge; annealing and/or sintering the sponge to form an annealed and/or sintered sponge; heating the annealed and/or sintered sponge in an oxidizing atmosphere to form an oxidized sponge having zinc oxide on the surface of the oxidized sponge; and electrochemically reducing the zinc oxide to form a zinc metal sponge.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: September 1, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Joseph F. Parker, Jeffrey W. Long, Debra R. Rolison
  • Patent number: 10762954
    Abstract: Devices and methods for the detection of magnetic fields, strain, and temperature using the spin states of a VSi? monovacancy defect in silicon carbide, as well as quantum memory devices and methods for creation of quantum memory using the spin states of a VSi? monovacancy defect in silicon carbide.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: September 1, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Öney Soykal, Thomas L. Reinecke, Samuel G. Carter
  • Patent number: 10761028
    Abstract: Methods and systems for determining extracellular concentration data of an analyte are disclosed. A method for determining extracellular concentration data of an analyte includes receiving sensor data from one or more arrays of functionalized plasmonic nanostructures on a localized surface plasmon resonance imaging chip in contact with a fluid containing at least one living cell for a plurality of times, determining intensity data for the one or more arrays, determining fractional occupancy based on the intensity data, and determining extracellular concentration data based on the fractional occupancy data. A system for determining extracellular concentration data of an analyte includes a LSPRi chip, a sensor component, an intensity component, a fractional occupancy component, a concentration component, and a processor to implement the components.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: September 1, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Marc P. Raphael, Joseph A. Christodoulides, Jeff M. Byers, James B. Delehanty
  • Patent number: 10763537
    Abstract: The disclosure provides a method a method for generating a heterogeneous carbon-bonded material using an activated carbon support a solution comprising a material precursor and a chemical agent. The material precursor is typically a salt such as SnCl2, and the chemical agent is a substance which thermally decomposes to generate reducing gases. The mixture is heated in an inert, nonreactive atmosphere to generate the reducing gases and remove surface groups from the carbon support, allowing material such as metal from the material precursor to nucleate and directly bond to the sites. The method typically utilizes high specific surface area carbon and may produce a plurality of metal particles having an average diameter of less than about 20 nm dispersed on and strongly bonded to the underlying carbon support.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: September 1, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jonathan Phillips, Claudia C. Luhrs
  • Patent number: 10762925
    Abstract: A patterned magnetic graphene made from the steps of transferring or growing a graphene film on a substrate, functionalizing the graphene film, hydrogenating the graphene film and forming fully hydrogenated graphene, manipulating the extent of the hydrogen content by using an electron beam from a scanning electron microscope to selectively remove hydrogen, wherein the step of selectively removing hydrogen occurs under a vacuum, and forming areas of magnetic graphene and non-magnetic graphene. A ferromagnetic graphene film comprising film that has a thickness of less than two atom layers thick.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: September 1, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Woo K. Lee, Keith E. Whitener, Paul E. Sheehan
  • Patent number: 10759052
    Abstract: An apparatus and system for launching and/or capturing an unmanned aerial vehicle (UAV). The apparatus includes a moving substrate having an electromagnetic end effector and a UAV with a metallic strike plate to be attracted to the end effector when the electromagnet is activated. The system includes a movable robotic arm having a free end and a secured end; an electromagnetic end effector connected proximate to the free end of the robotic arm; a UAV with a metallic strike to be attracted and held to the electromagnetic end effector when the electromagnetic end effector is active; trajectory software configured to control a location of the free end of the robotic arm; and a control module for receiving input data, analyzing the data and using the trajectory software to control the location of and activate or deactivate the electromagnetic end effector. Also described are methods for launching and capturing the UAV.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: September 1, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Gregory P. Scott, Andrew Bolkhovitinov
  • Patent number: 10751801
    Abstract: A new Enhanced High Pressure Sintering (EHPS) method for making three-dimensional fully dense nanostructures and nano-heterostructures formed from nanoparticle powders, and three-dimensional fully dense nanostructures and nano-heterostructures formed using that method. A nanoparticle powder is placed into a reaction chamber and is treated at an elevated temperature under a gas flow to produce a cleaned powder. The cleaned powder is formed into a low density green compact which is then sintered at a temperature below conventional sintering temperatures to produce a fully dense bulk material having a retained nanostructure or nano-heterostructure corresponding to the nanostructure of the constituent nanoparticles. All steps are performed without exposing the nanoparticle powder to the ambient.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: August 25, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Boris N. Feigelson, James A. Wollmershauser
  • Publication number: 20200261939
    Abstract: An apparatus having: a vessel for containing a suspension of a liquid and solid particles; a tube having a narrowed portion to draw the suspension from the vessel into the tube when a gas flows through the tube; an aerosol generator coupled to the tube for forming an aerosol from the suspension; a dehydrator coupled to the aerosol generator for removing the liquid from the aerosol forming a dried aerosol; a multiple-pass spectroscopic absorption cell coupled to the dehydrator to pass the dried aerosol into the absorption cell; and a Fourier transform spectrometer coupled to the absorption cell to measure an absorption spectrum of the dried aerosol.
    Type: Application
    Filed: February 7, 2020
    Publication date: August 20, 2020
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jake Fontana, Jawad Naciri
  • Publication number: 20200266061
    Abstract: A method of making a crystallographically-oriented metallic film with a two-dimensional crystal layer, comprising the steps of providing a metal film on a substrate, transferring a two-dimensional crystal layer onto the metal film and forming a two-dimensional crystal layer on metal film complex, heating the two-dimensional crystal layer on metal film complex, and forming a crystallographically-oriented metallic film with a two-dimensional crystal layer. A crystallographically-oriented metallic film with a two-dimensional crystal layer, comprising a substrate, a metal film on the substrate, a two-dimensional crystal layer on the metal film on the substrate, and a tunable microstructure within the porous metal/two-dimensional crystal layer on the substrate, wherein the metal film has crystallographic registry to the two-dimensional crystal layer.
    Type: Application
    Filed: January 28, 2020
    Publication date: August 20, 2020
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jeremy T. Robinson, Jose J. Fonseca Vega, Maxim K. Zalalutdinov, III
  • Publication number: 20200262529
    Abstract: A docking system has flat funnel and a slotted ramp at the end of the flat funnel. The slotted ramp has a plurality of inclined planes, each on a respective side of the slot. A docking adapter, fitted over an underwater vehicle, includes a guide plane and a mask. The flat funnel guides the guide plane to the top of the ramp during docking, so that the underwater vehicle may be charged. Another aspect of the invention is a highly maneuverable glider including a forwardly mounted buoyancy module followed a pitch module, followed by a processing module, followed by a roll module, mounted concentrically with respect to each other. The glider may be attached to any docking system, not just that of the present invention. When used in conjunction with the docking system of the present invention, the glider may be attached to either the flat funnel or the docking adapter of the docking system of the present invention.
    Type: Application
    Filed: May 1, 2020
    Publication date: August 20, 2020
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Nina Mahmoudian, Brian Page
  • Patent number: 10739650
    Abstract: An electro-optical liquid crystal cell comprising a first substrate, a first layer of indium tin oxide (ITO) on the first substrate, a first layer of h-BN on the first layer of ITO on the first substrate, and a layer of liquid crystal on the first layer of h-BN on the first layer of ITO on the first substrate. Furthermore, the electro-optical liquid crystal cell can comprise a second layer of h-BN, a second layer of ITO, and a second substrate. This h-BN cell exhibits the required electro-optic effect needed for a liquid crystal display. This h-BN cell exhibits high optical transmission.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: August 11, 2020
    Assignee: The Government of the United States of America, as represented the Secretary of the Navy
    Inventor: Rajratan Basu
  • Patent number: 10741914
    Abstract: Structures and configurations for planar ultrawideband modular antenna arrays. One example of a PUMA array includes an unbalanced RF interface, a lattice of horizontal dipole segments directly fed with the unbalanced RF interface, the lattice being arranged in either a dual-offset dual-polarized configuration or a single-polarization configuration, and a metallic plate capacitively-coupled to the lattice of horizontal dipole segments and pinned to a ground plane with a first plated via.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: August 11, 2020
    Assignees: UNIVERSITY OF MASSACHUSETTS, THE GOVERNMENT OF THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF THE NAVY
    Inventors: Marinos N. Vouvakis, Rick W. Kindt, John T. Logan
  • Publication number: 20200247736
    Abstract: Disclosed is a method of: providing a fiber having propylene oxide adsorbed thereon; exposing the fiber to a gaseous sample; allowing the propylene oxide to react with any chlorine in the sample to form chloro-2-propanol. The method can be used to detect potassium chlorate.
    Type: Application
    Filed: January 31, 2020
    Publication date: August 6, 2020
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Lauryn E. DeGreeff, Janet M. Crespo Cajigas
  • Publication number: 20200248338
    Abstract: Disclosed is a fiber having a solid sheath and a liquid core. The liquid core has shear-thickening viscosity. Also disclosed is a method of electrospinning the fiber. The fiber may be useful for mechanical and sound damping.
    Type: Application
    Filed: February 3, 2020
    Publication date: August 6, 2020
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jeffrey G. Lundin, Michael J. Bertocchi, Robert B. Balow, James H. Wynne
  • Publication number: 20200247914
    Abstract: Disclosed is a method of: providing a solution having a solvent, a polybutadiene, and an acrylate; and functionalizing the polybutadiene with the diacrylate to produce an ionic polymer. The polymer may be useful as an additive manufacturing binder.
    Type: Application
    Filed: February 4, 2020
    Publication date: August 6, 2020
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Riccardo Casalini, James Hemmer, Brian Mason
  • Patent number: 10734564
    Abstract: Disclosed is an article having: a porous thermally insulating material, an electrically conductive coating on the thermally insulating material, and a thermoelectric coating on the electrically conductive coating. Also disclosed is a method of forming an article by: providing a porous thermally insulating material, coating an electrically conductive coating on the thermally insulating material, and coating a thermoelectric coating on the electrically conductive coating. The articles may be useful in thermoelectric devices.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: August 4, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventor: Debra R. Rolison
  • Patent number: 10733428
    Abstract: A method for recognizing an action captured on an event-based camera includes the steps of receiving asynchronously transmitted pixel locations which have changed intensity via an address-event bus; stacking a plurality of frames of received pixel location to form a surrogate RGB image where the channels represent individual frames; inputting the surrogate RGB image into a first convolutional neural network; and extracting feature f1 from a last fully connected layer of the convolutional neural network to obtain an action classification of the action, thereby recognizing the action.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: August 4, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Wallace Lawson, Keith Sullivan
  • Patent number: 10730050
    Abstract: The combined value of integrating optical forces and electrokinetics allows for the pooled separation vectors of each to be applied, providing for separation based on combinations of features such as size, shape, refractive index, charge, charge distribution, charge mobility, permittivity, and deformability. The interplay of these separation vectors allow for the selective manipulation of analytes with a finer degree of variation. Embodiments include methods of method of separating particles in a microfluidic channel using a device comprising a microfluidic channel, a source of laser light focused by an optic into the microfluidic channel, and a source of electrical field operationally connected to the microfluidic channel via electrodes so that the laser light and the electrical field to act jointly on the particles in the microfluidic channel. Other devices and methods are disclosed.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: August 4, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Sean J. Hart, Sarah J. R. Staton, Alexander V. Terray, Gregory E. Collins
  • Patent number: 10734943
    Abstract: A system for transmitting power to a remote equipment, the system including a first laser source that generates a first laser beam; a first tracking device operatively connected to the first laser source, wherein the first tracking device controls a direction of the first laser beam; and a first photovoltaic device operatively connected to the remote equipment located remotely from the first laser source and the first tracking device, wherein the first photovoltaic device includes a semiconductor material that generates an electric current in response to absorbing the first laser beam, and wherein a first wavelength of the first laser beam is within an eye-safer range.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: August 4, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jesse A. Frantz, Jason D. Myers, Steven R. Bowman, L. Brandon Shaw, Jasbinder S. Sanghera