Patents Assigned to The Salk Institute for Biological Studies
  • Publication number: 20200190019
    Abstract: Provided herein are compounds and compositions useful in increasing PPAR? activity. The compounds and compositions provided herein are useful for the treatment of PPAR? related diseases (e.g., muscular diseases, vascular disease, demyelinating disease, and metabolic diseases).
    Type: Application
    Filed: December 16, 2019
    Publication date: June 18, 2020
    Applicants: Salk Institute for Biological Studies, Mitobridge, Inc.
    Inventors: Ronald M. Evans, Michael Downes, Thomas J. Baiga, Joseph P. Noel, Emi Kanakubo Embler, Weiwei Fan, John F.W. Keana, Mark G. Bock, Authur F. Kluge, Mike A. Patane
  • Patent number: 10666592
    Abstract: Provided herein are CRISPR/Cas methods and compositions for targeting RNA molecules, which can be used to detect, edit, or modify a target RNA.
    Type: Grant
    Filed: December 31, 2018
    Date of Patent: May 26, 2020
    Assignee: Salk Institute for Biological Studies
    Inventors: Patrick D. Hsu, Silvana Konermann
  • Publication number: 20200149014
    Abstract: Methods of assembling modified adenoviruses, libraries of adenoviral gene modules and compositions thereof are provided herein.
    Type: Application
    Filed: January 22, 2020
    Publication date: May 14, 2020
    Applicant: Salk Institute for Biological Studies
    Inventors: Clodagh O'Shea, Colin Powers
  • Publication number: 20200141947
    Abstract: The invention features compositions and methods treating or preventing for age-related insulin resistance, type 2 diabetes and related disorders. The method involves depleting fTreg cells with an anti-ST2 antibody to decrease age-related fTreg accumulation and restore insulin sensitivity, thereby treating age-related insulin resistance, type 2 diabetes and related disorders.
    Type: Application
    Filed: December 4, 2019
    Publication date: May 7, 2020
    Applicant: SALK INSTITUTE FOR BIOLOGICAL STUDIES
    Inventors: SAGAR P. BAPAT, YE ZHENG, RONALD EVANS, MICHAEL DOWNES, ANNETTE R. ATKINS, RUTH T. YU
  • Publication number: 20200129532
    Abstract: Methods are provided for reducing blood glucose, which utilize an agent that increases the biological activity of a vitamin D receptor (VDR) (e.g., a VDR agonist), in combination with an antagonist of bromodomain-containing protein 9 (BRD9). IN some examples, such methods treat type II diabetes.
    Type: Application
    Filed: January 8, 2020
    Publication date: April 30, 2020
    Applicant: Salk Institute for Biological Studies
    Inventors: Ronald M. Evans, Michael Downes, Zong Wei, Annette Atkins, Ruth T. Yu
  • Publication number: 20200123113
    Abstract: Novel compounds having a formula embodiments of a method of making the same, and of a composition comprising them are disclosed herein. Also disclosed are embodiments of a method of treating or preventing a metabolic disorder in a subject, comprising administering to a subject (e.g., via the gastrointestinal tract) a therapeutically effective amount of one or more of the disclosed compounds, thereby activating FXR receptors in the intestines, and treating or preventing a metabolic disorder in the subject. Additionally disclosed are embodiments of a method of treating or preventing inflammation in an intestinal region of a subject, comprising administering to the subject (e.g., via the gastrointestinal tract) a therapeutically effective amount of one or more of the disclosed compounds, thereby activating FXR receptors in the intestines, and thereby treating or preventing inflammation in the intestinal region of the subject.
    Type: Application
    Filed: September 10, 2019
    Publication date: April 23, 2020
    Applicants: Salk Institute for Biological Studies, The University of Sydney
    Inventors: Ronald M. Evans, Michael Downes, Annette Atkins, Sungsoon Fang, Jae Myoung Suh, Thomas J. Baiga, Ruth T. Yu, John F.W. Keana, Christopher Liddle
  • Publication number: 20200127954
    Abstract: Provided herein are CRISPR/Cas methods and compositions for targeting RNA molecules, which can be used to detect, edit, or modify a target RNA.
    Type: Application
    Filed: December 31, 2018
    Publication date: April 23, 2020
    Applicant: Salk Institute for Biological Studies
    Inventors: Patrick D. Hsu, Silvana Konermann
  • Patent number: 10577589
    Abstract: Methods of assembling modified adenoviruses, libraries of adenoviral gene modules and compositions thereof are provided herein.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: March 3, 2020
    Assignee: Salk Institute for Biological Studies
    Inventors: Clodagh O'Shea, Colin Powers
  • Publication number: 20200040051
    Abstract: The present disclosure provides FGF1 mutant proteins having one or more mutations in the heparin binding domain. Such mutants may also have an N-terminal deletion, point mutation(s), or combinations thereof. In some examples, the mutant FGF1 proteins have reduced mitogenic activity. Also provided are nucleic acid molecules that encode such proteins, and vectors and cells that include such nucleic acids. The disclosed FGF1 mutants can reduce blood glucose in a mammal, and in some examples are used to treat a metabolic disorder.
    Type: Application
    Filed: October 24, 2019
    Publication date: February 6, 2020
    Applicants: Salk Institute for Biological Studies, The Florida State University Research Foundation, Incorporated
    Inventors: Ronald M. Evans, Michael Downes, Annette Atkins, Ruth T. Yu, Michael Blaber, Xue Xia
  • Patent number: 10550071
    Abstract: Provided herein are compounds and compositions useful in increasing PPAR? activity. The compounds and compositions provided herein are useful for the treatment of PPAR? related diseases (e.g., muscular diseases, vascular disease, demyelinating disease, and metabolic diseases).
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: February 4, 2020
    Assignees: Salk Institute for Biological Studies, Mitobridge, Inc.
    Inventors: Ronald M. Evans, Michael Downes, Thomas J. Baiga, Joseph P. Noel, Emi Kanakubo Embler, Weiwei Fan, John F. W. Keana, Mark G. Bock, Arthur F. Kluge, Mike A. Patane
  • Patent number: 10550149
    Abstract: Provided herein are deuterated compounds and compositions useful in increasing PPAR? activity. The compounds have a formula where L5 comprises at least one deuterium. Exemplary species include The compounds and compositions provided herein are useful for the treatment of PPAR? related diseases (e.g., muscular diseases, vascular disease, demyelinating disease, and metabolic diseases).
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: February 4, 2020
    Assignee: Salk Institute for Biological Studies
    Inventors: Ronald M. Evans, Michael Downes
  • Patent number: 10539572
    Abstract: The invention features compositions and methods treating or preventing for age-related insulin resistance, type 2 diabetes and related disorders. The method involves depleting fTreg cells with an anti-ST2 antibody to decrease age-related fTreg accumulation and restore insulin sensitivity, thereby treating age-related insulin resistance, type 2 diabetes and related disorders.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: January 21, 2020
    Assignee: SALK INSTITUTE FOR BIOLOGICAL STUDIES
    Inventors: Sagar P. Bapat, Ye Zheng, Ronald Evans, Michael Downes, Annette R. Atkins, Ruth T. Yu
  • Publication number: 20190358296
    Abstract: The method provides methods and compositions for treating metabolic disorders such as impaired glucose tolerance, elevated blood glucose, insulin resistance, dyslipidemia, obesity, and fatty liver.
    Type: Application
    Filed: August 12, 2019
    Publication date: November 28, 2019
    Applicant: Salk Institute for Biological Studies
    Inventors: Johan W. Jonker, Michael Downes, Ronald M. Evans, Jae Myoung Suh
  • Patent number: 10479775
    Abstract: Provided herein are compounds and compositions useful in increasing PPAR? activity. The compounds and compositions provided herein are useful for the treatment of PPAR? related diseases (e.g., muscular diseases, vascular disease, demyelinating disease, and metabolic diseases).
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: November 19, 2019
    Assignees: Mitobridge, Inc., The Salk Institute for Biological Studies
    Inventors: Michael Downes, Ronald M. Evans, Arthur Kluge, Bharat Lagu, Masanori Miura, Sunil Kumar Panigrahi, Michael Patane, Susanta Samajdar, Ramesh Senaiar, Taisuke Takahashi
  • Patent number: 10450277
    Abstract: Novel compounds having a formula embodiments of a method of making the same, and of a composition comprising them are disclosed herein. Also disclosed are embodiments of a method of treating or preventing a metabolic disorder in a subject, comprising administering to a subject (e.g., via the gastrointestinal tract) a therapeutically effective amount of one or more of the disclosed compounds, thereby activating FXR receptors in the intestines, and treating or preventing a metabolic disorder in the subject. Additionally disclosed are embodiments of a method of treating or preventing inflammation in an intestinal region of a subject, comprising administering to the subject (e.g., via the gastrointestinal tract) a therapeutically effective amount of one or more of the disclosed compounds, thereby activating FXR receptors in the intestines, and thereby treating or preventing inflammation in the intestinal region of the subject.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: October 22, 2019
    Assignees: The Salk Institute for Biological Studies, University of Sydney
    Inventors: Ronald M. Evans, Michael Downes, Annette Atkins, Sungsoon Fang, Jae Myoung Suh, Thomas J. Baiga, Ruth T. Yu, John F. W. Keana, Christopher Liddle
  • Publication number: 20190314523
    Abstract: Synthetic adenoviruses with liver detargeting mutations and expressing an adenovirus type 34 (Ad34) fiber protein, or a chimeric fiber protein with an Ad34 knob domain, are described. The synthetic adenoviruses traffic to sites of tumors. Use of the synthetic adenoviruses for delivering diagnostic or therapeutic transgenes to tumors are also described.
    Type: Application
    Filed: June 7, 2019
    Publication date: October 17, 2019
    Applicant: Salk Institute for Biological Studies
    Inventors: Clodagh O'Shea, Colin Powers, Lei Zhang
  • Publication number: 20190314525
    Abstract: Synthetic adenoviruses with tropism to bone tissue are described. The synthetic adenoviruses include an adenovirus type 11 (Ad11) fiber protein or a chimeric adenovirus fiber protein having an Ad11 knob domain. The synthetic adenoviruses can also include a transgene, such as a reporter gene or a transgene encoding a factor that promotes bone regeneration or repair. Use of the synthetic adenoviruses to target bone tissue and/or to promote bone repair or regeneration is also described.
    Type: Application
    Filed: June 21, 2019
    Publication date: October 17, 2019
    Applicant: Salk Institute for Biological Studies
    Inventors: Clodagh O'Shea, Colin Powers, Lei Zhang
  • Publication number: 20190276510
    Abstract: The present disclosure provides FGF1 mutant proteins, which include an N-terminal deletion, point mutation(s), or combinations thereof, as well as FGF1-vagus targeting chimeric proteins which include an FGF1 portion (e.g., native FGF1 or mutant FGF1) and a portion that targets the chimera to the vagus nerve (e.g., GLP or exendin-4). Also provided are nucleic acid molecules that encode such proteins, and vectors and cells that include such nucleic acids. The disclosed FGF1 mutants and FGF1-vagus targeting chimeric proteins can reduce blood glucose in a mammal, and in some examples are used to treat a metabolic disorder.
    Type: Application
    Filed: May 22, 2019
    Publication date: September 12, 2019
    Applicant: Salk Institute for Biological Studies
    Inventors: Ronald M. Evans, Michael Downes, Annette Atkins, Ruth T. Yu, Sihao Liu
  • Patent number: 10399958
    Abstract: Provided herein are compounds I, II or III and compositions useful in increasing PPAR8 activity. The compounds and compositions provided herein are useful for the treatment of PPAR8 related diseases (e.g., muscular diseases, vascular disease, demyelinating disease, and metabolic diseases).
    Type: Grant
    Filed: October 5, 2016
    Date of Patent: September 3, 2019
    Assignees: Mitobridge, Inc., The Salk Institute for Biological Studies
    Inventors: Michael Downes, Ronald M. Evans, Arthur Kluge, Bharat Lagu, Masanori Miura, Sunil Kumar Panigrahi, Michael Patane, Susanta Samajdar, Ramesh Senaiar, Taisuke Takahashi
  • Patent number: 10398759
    Abstract: The method provides methods and compositions for treating metabolic disorders such as impaired glucose tolerance, elevated blood glucose, insulin resistance, dyslipidemia, obesity, and fatty liver.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: September 3, 2019
    Assignee: Salk Institute for Biological Studies
    Inventors: Johan W. Jonker, Michael Downes, Ronald M. Evans, Jae Myoung Suh