Patents Assigned to The United States of America as represented by the Administrator of NASA
  • Patent number: 10736062
    Abstract: Systems, methods, and devices of the various embodiments may provide for synchronizing clocks across a distributed network of nodes. Various embodiments include an autonomous distributed fault-tolerant local positioning system, a fault-tolerant GPS-independent autonomous distributed local positioning system, for static and/or mobile objects, and/or solutions for providing highly-accurate geo-location data for static and/or mobile objects in dynamic environments. Various embodiments enable faulty Echo message recovery using trilateration from locally time-stamped events obtained from other nodes in a distributed network of nodes. Using the faulty Echo message recovery techniques, in addition to clock synchronization various embodiments may enable object detection and location.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: August 4, 2020
    Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventor: Mahyar R. Malekpour
  • Patent number: 10730646
    Abstract: Disclosed herein is a system including an oxidizer nozzle tool having a first end, a rotary drive and a linear drive mechanism. A component, such as a quick disconnect valve, is attached to the first end of the oxidizer nozzle. The rotary drive actuates the component to engage and seal to a drain valve on a device (such as a satellite) such that the component can open and close the drain value while maintaining the seal, wherein the linear drive mechanism is operable to lock and release the component from the oxidizer nozzle tool. A hose is mated to the oxidizer nozzle tool, wherein upon actuation, fluid flows through the hose to the oxidizer nozzle tool and through the component into the drain valve.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: August 4, 2020
    Assignee: United States of America as represented by the Administrator of NASA
    Inventors: Hans R. Raven, Matthew W. Sammons, Patrick O'Neill
  • Patent number: 10723912
    Abstract: Various embodiments provide epoxy modified fluorinated urethane compositions that may provide desirable bulk mechanical properties of conventional coatings, adhesives, or structural matrix resins, while simultaneously exhibiting surface properties that may reduce surface contamination. Various embodiments provide formulations comprising epoxy modified fluorinated alkyl ether including urethane oligomer or polymer resins that may possess the requisite thermal, mechanical, chemical, and optical properties while achieving a low surface energy. In various embodiments, such resins may be prepared from random urethane oligomer compositions including fluorinated alkyl ether segments, in which the oligomers may be terminated with amino groups and subsequently reacted with epoxy including monomers or oligomers.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: July 28, 2020
    Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventors: Jereme R. Doss, John W. Connell, Christopher J. Wohl, Jr.
  • Patent number: 10727325
    Abstract: A horizontal vacuum channel transistor is provided. The horizontal transistor includes a substrate, horizontal emitter and collector electrodes formed in a layer of semiconductor material of the substrate, and a horizontal insulated gate located between the emitter and collector electrodes. The emitter electrode includes multiple horizontally-aligned emitter tips connected to a planar common portion, and the collector electrode includes a planar portion. The gate includes multiple horizontally-aligned gate apertures passing through the gate that each correspond to one of the emitter tips of the emitter electrode. The minimum distance between the emitter and collector electrodes is less than about 180 nm. Also provided are a vertical vacuum channel transistor having vertically-stacked emitter and collector electrodes, and methods for fabricating vacuum channel transistors.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: July 28, 2020
    Assignee: United States of America as Represented by the Administrator of NASA
    Inventors: Jin-Woo Han, Meyya Meyyappan
  • Patent number: 10717836
    Abstract: Thermal protective materials suitable for use in a spacecraft include a substrate, such as carbon fibers or carbon felt, and cyanate ester resin or phthalonitrile resin, and cross-linkers. These thermal protective materials have a density of about 0.2 to about 0.35 g/cm3. Methods of making the thermal protective materials include mixing a cyanate ester resin or a phthalonitrile resin and a cross-linker to result in a resin solution, infusing the resin solution into a substrate, and curing the resin to result in the thermal protective material.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: July 21, 2020
    Assignee: United States of America as Represented by the Administrator of NASA
    Inventors: Tane Boghozian, Margaret M. Stackpoole
  • Patent number: 10717548
    Abstract: A deployable multi-section boom comprising a first hinge assembly including a base section adapted to be attached to a structure, a movable section that is pivotably attached to the base section and a first boom attached to the movable section. The first hinge assembly is configured to allow the first boom to pivot in a first direction to a first predetermined maximum angle with respect to the base section. A first constant torque assembly constantly urges the first boom to pivot in the first direction and includes a component attached to the base section of the first hinge assembly. The multi-section boom includes a second hinge assembly that includes a first section attached to the first boom and a second section that is pivotably attached to the first section. A second boom is attached to the second section of the second hinge assembly wherein the second hinge assembly allows the second boom to pivot in a second direction to a second predetermined maximum angle with respect to the first boom.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: July 21, 2020
    Assignee: United States of America as represented by the Administrator of NASA
    Inventor: Luis H. Santos Soto
  • Patent number: 10715073
    Abstract: The present invention relates to a Robot Electronics Unit (REU) motor controller board (MCB) with a trapezoid wave design, which can utilize power efficiently and reduce electromagnetic interference. The MCB uses a modulator or Buck Converter to regulate the voltage before it is passed to the motors used in robotic arms in space applications. The REU MCB includes: a commutator disposed on the MCB and connected to a three-phase induction motor; and a modulator disposed on the MCB and which precedes the commutator, the modulator which utilizes pulse width modulation (PWM) to regulate a voltage to the commutator and provide a predetermined current to the commutator. The modulator regulates the voltage by stepping it down from a 100V power input signal before the voltage is passed to the motor. The output of the modulator includes a trapezoid waveform design which controls the motor and reduces electromagnetic interference.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: July 14, 2020
    Assignee: United States of America as represented by the Administrator of NASA
    Inventors: Ireneusz Orlowski, Pietro A. Sparacino, Seshagiri Nadendla, Roger M. Chiei, David J. Petrick
  • Patent number: 10712378
    Abstract: Various embodiments provide a multi-dimensional electric potential sensor array to remotely quantitatively measure static, quasi-static, and dynamic electric potential and electric field in free space, and emanating and propagating from objects. Various embodiments enable the evaluation of the integrity of electronic circuits and electronic components by quantitatively and dynamically imaging electric potential generated during electronic circuit activation, operation, and deactivation. In various embodiments, the electrical potential of active electronics and objects of interest in containers may be quantitatively measured by the electric potential and electric field methods and by using specified materials in a combined structural and electronic component design to construct a multi-dimensional sensor array.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: July 14, 2020
    Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventor: Edward R. Generazio
  • Patent number: 10705539
    Abstract: Methods and systems for providing remote support and negotiating problem situations of autonomous operation of vehicles based on signal states and vehicle information are described. The disclosed technology receives state data for the vehicles by an apparatus such as a remote vehicle support apparatus. The state data indicates a respective current state for the vehicles. The vehicles are each assigned to respective remote vehicle support queues based on the respective state data. An indication that one of the vehicles is requesting remote support is received by the remote vehicle support apparatus. In response to a determination that a change in the state data indicates that autonomous operation of the one of the vehicles is operating outside of defined parameter values, the remote support is provided to the one of the vehicles through a communications link by transmitting instruction data to modify the autonomous operation of the one of the vehicles.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: July 7, 2020
    Assignees: Nissan North America, Inc., United States of America as Represented by the Administrator of NASA
    Inventors: Liam Pedersen, Maarten Sierhuis, Hans Utz, Mauro Della Penna, Terrence Fong, Mark Allan, Maria Bualat, Eric Schafer
  • Patent number: 10698024
    Abstract: A self-healing microchip comprising a commercial-off-the-shelf (COTS) microchip lacking radiation shielding. The self-healing microchip includes one or more microheaters that are integrated directly upon a surface of the COTS microchip, a self-test circuit which detects a degradation in the COTS microchip, and one or more temperature sensors. The one or more microheaters may be formed directly upon a backside surface of the COTS microchip using tungsten sputtered shadow mask patterning or by lithography and etching, for example. In response to a detected degradation in the COTS microchip, a temperature control configures an output temperature generated by the one or more microheaters and an amount of time at which the output temperature is maintained to cause annealing in the microchip responsive to the detected degradation in the COTS microchip.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: June 30, 2020
    Assignee: United States of America as Represented by the Administrator of NASA
    Inventors: Jin-Woo Han, Meyya Meyyappan
  • Patent number: 10696423
    Abstract: Method for placing a spacecraft into a lunar orbit, either by standard (i.e., impulsive) or ballistic (i.e., non-impulsive) capture, from an Earth orbit that is significantly inclined relative to the lunar orbit plane, with no constraint on the local time of perigee for the starting orbit.
    Type: Grant
    Filed: January 3, 2017
    Date of Patent: June 30, 2020
    Assignee: United States of America as Represented by the Administrator of NASA
    Inventors: Anthony L. Genova, Scott Mitchell
  • Patent number: 10697890
    Abstract: The present invention relates to measuring hydroxyl in an atmosphere, including forwarding sunlight and ultraviolet light into a gas cell; switching between nitrogen gas only, or nitrogen gas and water vapor, into the gas cell; emitting ultraviolet rays into the cell which breaks down the water vapor into hydroxyl; and detecting a difference between two states, including 1) an OFF state where only nitrogen gas does not react to the ultraviolet light or the sunlight and there is no OH filter and the detector detects light that OH absorbs; and 2) an ON state where the water vapor is broken down by the ultraviolet rays to produce hydroxyl, and the gas cell acts as an OH filter and does not detect the light that OH absorbs; where a difference in signals measured by the detector in the two states is proportional to a column abundance of OH in earth atmosphere.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: June 30, 2020
    Assignee: United States of America as represented by the Administrator of NASA
    Inventors: Steven A. Bailey, Thomas F. Hanisco
  • Patent number: 10688560
    Abstract: A method and system are provided for mapping a melt pattern of material created during directed energy fabrication. An infrared camera and a video camera are provided to record images of the pattern of melted material. Each frame of the infrared camera's images is processed to generate a first map of pixels identifying pixels indicative of a highest temperature greater than or equal to a liquidus temperature of the meltable material. Each frame of the video camera's images is processed to generate a second map of pixels identifying pixels indicative of a highest temperature greater than or equal to the liquidus temperature of the meltable material. The first map of pixels and said second map of pixels are overlaid on each other wherein a third map of pixels is generated and is indicative of a hybrid image of the pattern of melted material.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: June 23, 2020
    Assignee: United States of America as represented by the Administrator of NASA
    Inventors: Paul R. Gradl, Adam C. Kimberlin, Darrell Edwin Gaddy, Roger Derek Moody
  • Patent number: 10690918
    Abstract: According to certain examples, a head-mounted apparatus includes a safety eyewear component and an optical display coupled to the safety eyewear component. The safety eyewear component is configured to be worn of a head of an operator and to block transmission of a laser light therethrough. The optical display is configured to receive data associated with the laser light and to display a visual representation of the laser light in a field of view of the operator. In other examples, an apparatus includes a display, a sensor, at least one processor and at least one memory storing computer-readable instructions that, when executed by the at least one processor, cause the apparatus to receive, from the sensor, data associated with a laser light, process the data, and provide an image to the display, such as a representation of the laser light.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: June 23, 2020
    Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventors: Jennifer A. Inman, Paul M. Danehy, Brian K. Perkins, Christopher J. Peters
  • Patent number: 10677741
    Abstract: Systems, methods, and devices of the various embodiments may enable simultaneous preparation of a substrate for adhesive bonding and detection of minute contaminants on the substrate. Various embodiments may enable detection of contaminants on a surface of a substrate while the surface of the substrate is being prepared for adhesive bonding by laser ablation. Various embodiments may provide an integrated laser treatment and measurement system.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: June 9, 2020
    Assignee: United States of America as Represented by the Administrator of NASA
    Inventors: John W. Connell, Frank L. Palmieri, William T. Yost, John W. Hopkins, Rodolfo I Ledesma
  • Patent number: 10681837
    Abstract: An electronic assembly support system includes a frame having a plurality of side rails side rails to be positioned along a longitudinal axis of an electronic assembly, a plurality of cross rails connected between the side rails, positioned to surround predetermined components of the electronic assembly, and a first fastener interface for attaching the plurality of side rails and cross rails to the electronic assembly.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: June 9, 2020
    Assignee: United States of America as represented by the Administrator of NASA
    Inventors: Milton C. Davis, David J. Petrick
  • Patent number: 10676374
    Abstract: A wastewater stream including ammonia and water is fed to at least one packed column including packing material having a surface of solid magnesium phosphate or solid magnesium ammonium phosphate or both. Each of the packed columns is capable of cycling between an ammonia absorption operation and an ammonia regeneration operation. The magnesium phosphate compound reacts with the water and ammonia to form a magnesium ammonium phosphate compound. In one embodiment, this system provides for the regeneration of the magnesium ammonium phosphate compound for further use as an ammonia sorber. In another embodiment, the magnesium ammonium phosphate compound is used as fertilizer. Additionally, the ammonia capture and recovery system may be used in conjunction with other unit operations in an overall wastewater treatment system.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: June 9, 2020
    Assignee: United States of America as Represented by the Administrator of NASA
    Inventors: Griffin M. Lunn, Andrew F. Gleich, Oscar A. Monje, Julia M. Worrell
  • Patent number: 10669045
    Abstract: A system and method of providing an affordable navigation, guidance and control system for arbitrary nano/micro launch vehicles by integrating commercial grade sensors with advanced estimation algorithms in a manner that provides sufficient accuracy of the resulting vehicle state estimates to inject nano/micro satellites into low earth orbits. The system and method uses commercial grade sensors and an advanced sensor-fusion estimator software that estimates and removes the estimated measurement errors and filters noise produced by the commercial grade sensors, resulting in estimated states with suitable accuracy. The filtered data are sent to a guidance and control system where actuator commands are formulated based on the filtered data. A simulated launch and flight of the launch vehicle is performed using the filtered data to validate that the GNC system and launch vehicle are ready for launch.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: June 2, 2020
    Assignee: United States of America as Represented by the Administrator of the NASA
    Inventors: James Joseph Cockrell, Max Michael Briggs, David James Mayer, Aaron James Cohen
  • Patent number: 10669360
    Abstract: Various embodiments provide dye-doped polystyrene microspheres generated using dispersion polymerization. Polystyrene microspheres may be doped with fluorescent dyes, such as xanthene derivatives including Kiton Red 620 (KR620), using dispersion polymerization. Certain functionalities, such as sodium styrene sulfonate, may be used to shift the equilibrium distribution of dye molecules to favor incorporation of the dye into the particles. Polyelectrolyte materials, such as poly(diallyldimethyl ammnonium chloride), PolyDADMAC, may be used to electrostatically trap and bind dye molecules within the particles. A buffer may be used to stabilize the pH change of the solution during dye-doped polystyrene microsphere generation and the buffer may be selected depending on the pKa of the dye being incorporated. The various embodiments may provide dye-doped polystyrene microspheres, such as KR620-doped polystyrene microspheres that are non-toxic and non-carcinogenic.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: June 2, 2020
    Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventors: Christopher J. Wohl, Jr., Pacita I. Tiemsin, Paul M. Danehy, Jason E. Danley
  • Patent number: 10667398
    Abstract: The present invention relates to a single board computer system with an improved memory and layout. The unique layout of the printed circuit board of the present invention allows for different parts to be placed in a back-to-back configuration to minimize the dimensions of the printed circuit board. This includes a high-performance radiation-hardened reconfigurable FPGA, for processing computation-intensive space systems, disposed on both sides of the printed circuit board. Four dual double data rate synchronous dynamic random-access memories (DDR2 SDRAMs) disposed on both the top side and on the bottom side of the printed circuit board reduce an operating voltage of said printed circuit board. A layout stack-up of the printed circuit board includes twenty-two symmetrical layers including ten ground layers, four power layers, six signal layers, a top layer, and a bottom layer.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: May 26, 2020
    Assignee: United States of America as represented by the Administrator of NASA
    Inventors: David J. Petrick, Alessandro D. Geist, Thomas P. Flatley