Patents Assigned to The United States of America as represented by the Secretary of Commerce, The National Institute of Standards & Technology
  • Patent number: 10067088
    Abstract: Gradient elution isotachophoretic apparatus, and systems for performing gradient elution isotachophoresis to separate, purify, concentrate, quantify, and/or extract charged analytes from a sample. The isotachophoretic apparatus include an electrophoretic assembly, a sampling assembly connected to the electrophoretic assembly, and/or a support structure connected to the electrophoretic assembly and/or to the sampling assembly. The system includes an isotachophoretic apparatus, and a controller communicatively coupled to the isotachophoretic apparatus. The controller includes a storage medium and a processor for executing computer readable and executable instructions.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: September 4, 2018
    Assignees: Applied Research Associates, Inc., The United States of America, as Represented by the Secretary of Commerce National Institute of Standards and Technology
    Inventors: Alyssa Henry, Christopher Konek, David Ross, Elizabeth Strychalski
  • Patent number: 9688867
    Abstract: A flame retardant coating composition comprising poly(dopamine) and either tris(hydroxymethyl)aminomethane) or gaseous ammonia, as well as an article comprising a substrate and the flame retardant coating composition, is provided. In various embodiments, the poly(dopamine) is substantially water insoluble. The coating composition can further comprise at least one additional component selected from the group consisting of melamine, an anionic clay, a phosphorus-containing compound, an amine-containing compound, aluminosilicates, silicon oxides, and combinations thereof. Also provided are methods for forming the flame retardant coating composition and methods for increasing flame retardant properties of a substrate.
    Type: Grant
    Filed: July 21, 2014
    Date of Patent: June 27, 2017
    Assignees: AMERICAN UNIVERSITY, THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF COMMERCE, THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
    Inventors: Mauro Zammarano, Douglas Fox, Philipp Grützmacher, Rick Davis
  • Patent number: 9627199
    Abstract: Methods of fabricating micro- and nanostructures comprise top-down etching of lithographically patterned GaN layer to form an array of micro- or nanopillar structures, followed by selective growth of GaN shells over the pillar structures via selective epitaxy. Also provided are methods of forming micro- and nanodisk structures and microstructures formed from thereby.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: April 18, 2017
    Assignees: University of Maryland, College Park, Northrop Grumman Systems Corporation, The United States of America, as represented by the Secretary of Commerce, National Institute of Standards and Technology
    Inventors: Abhishek Motayed, Sergiy Krylyuk, Albert V. Davydov, Matthew King, Jong-Yoon Ha
  • Patent number: 9558907
    Abstract: A cold cathode field emission electron source capable of emission at levels comparable to thermal sources is described. Emission in excess of 6 A/cm2 at 7.5 V/?m is demonstrated in a macroscopic emitter array. The emitter has a monolithic and rigid porous semiconductor nanostructure with uniformly distributed emission sites, and is fabricated through a room temperature process which allows for control of emission properties. These electron sources can be used in a wide range of applications, including microwave electronics and x-ray imaging for medicine and security.
    Type: Grant
    Filed: January 7, 2016
    Date of Patent: January 31, 2017
    Assignees: THE UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF COMMERCE, THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, UNIVERSITY OF MARYLAND
    Inventors: Fred Sharifi, Henry Lezec, Myung-Gyu Kang
  • Patent number: 9557219
    Abstract: A method of comb-based spectroscopy for measuring a CW source at time-bandwidth limited resolution by using frequency combs with a high degree of mutual coherence (<1 radian phase noise).
    Type: Grant
    Filed: August 28, 2013
    Date of Patent: January 31, 2017
    Assignee: The United States of America, as represented by the Secretary of Commerce, National Institute of Standards and Technology
    Inventors: Nathan R. Newbury, Ian Coddington, William C. Swann
  • Patent number: 9507993
    Abstract: A contactless, three-dimensional fingerprint scanner apparatus, method, and system are described. The contactless fingerprint scanner can provide either, or both, topographical contrast of three-dimensional fingerprint features and optical contrast of a three-dimensional fingerprint surface. Data captured from scanning of a target with known geometric features mimicking fingerprint features can be examined as images or surface plots and analyzed for fidelity against the known target feature specifications to evaluate or validate device capture performance as well as interoperability. The target can be used by scanner vendors and designers to validate their devices, as well as to perform type certification.
    Type: Grant
    Filed: January 14, 2016
    Date of Patent: November 29, 2016
    Assignee: The United States of America, as represented by the Secretary of Commerce, The National Institute of Standards and Technology
    Inventors: Shahram Orandi, Fred Byers, Stephen Harvey, Michael D. Garris, Stephen S. Wood, John M. Libert, Jin Chu Wu
  • Patent number: 9500610
    Abstract: Systems and methods for controlling the temperature of small volumes such as yoctoliter volumes, are described. The systems include one or more plasmonic nanostructures attached at or near a nanopore. Upon excitation of the plasmonic nanostructures, such as for example by exposure to laser light, the nanoparticles are rapidly heated thereby causing a change in the ionic conductance along the nanopore. The temperature change is determined from the ionic conductance. These temperature changes can be used to control rapid thermodynamic changes in molecular analytes as they interact with the nanopore.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: November 22, 2016
    Assignee: THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF COMMERCE, THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
    Inventors: John J. Kasianowicz, Joseph E. Reiner, Arvind K. Balijepalli, Joseph W. Robertson, Daniel L. Burden, Lisa Burden
  • Patent number: 9486179
    Abstract: A multilayered optical tissue phantom fabrication approach and inherently produced test target structure which address the issues of of optical conformity known in the art by controlling the formation of micrometer scale monolayers embedded with light-scattering microspheres.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: November 8, 2016
    Assignee: The United States of America, as represented by the Secretary of Commerce The National Institute of Standards and Technology
    Inventors: Jeeseong Hwang, Christopher Stafford, Robert Chang
  • Patent number: 9476862
    Abstract: A nanostructure sensing device comprises a semiconductor nanostructure having an outer surface, and at least one of metal or metal-oxide nanoparticle clusters functionalizing the outer surface of the nanostructure and forming a photoconductive nanostructure/nanocluster hybrid sensor enabling light-assisted sensing of a target analyte.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: October 25, 2016
    Assignees: University of Maryland, College Park, The United States of America, as Represented by the Secretary of Commerce, National Institute of Standards and Technology, George Mason University, The George Washington University
    Inventors: Abhishek Motayed, Geetha Aluri, Albert V. Davydov, Mulpuri V. Rao, Vladimir P. Oleshko, Ritu Bajpai, Mona E. Zaghloul
  • Patent number: 9450673
    Abstract: A microwave-frequency source at frequency fM comprises: a dual optical-frequency reference source, an electro-optic sideband generator, an optical bandpass filter, an optical detector, a reference oscillator, an electrical circuit, and a voltage-controlled oscillator (VCO). The sideband generator modulates dual optical reference signals at v2 and v1 to generate sideband signals at v1±n1fM and v2±n2fM. The bandpass filter transmits sideband signals at v1+N1fM and v2?N2fM. The optical detector generates a beat note at (v2?N2fM)?(v1+N1fM). The beat note and a reference oscillator signal are processed by the circuit to generate a loop-filtered error signal to input to the VCO. Output of the VCO at fM drives the sideband generator and forms the microwave-frequency output signal. The resultant frequency division results in reduced phase noise on the microwave-frequency signal.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: September 20, 2016
    Assignees: CALIFORNIA INSTITUTE OF TECHNOLOGY, THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF COMMERCE, THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
    Inventors: Kerry Vahala, Scott Diddams, Jiang Li, Xu Yi, Hansuek Lee
  • Patent number: 9437923
    Abstract: A system and method for imaging and aligning antennas that includes an overlay imaging aligner composed of two or more antennas in association with a polarization gate, a polarization beam splitter, a non-polarizing beam splitter, a beam dump, one or more imaging lens and a common detector array. The overlay imaging aligner aligns the antennas by overlaying simultaneous digital images associated with the antennas on the common detector array. The antennas can be, for example, mm Wave antennas, waveguides, etc. The detector array generates real-time digital images the antennas. Such an approach of simultaneous imaging leverages the spatial resolution of digital optical imaging to aligning antenna components.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: September 6, 2016
    Assignee: The United States of America, as represented by the Secretary of Commerce, The National Institute of Standards and Technology
    Inventor: Joshua A. Gordon
  • Patent number: 9349033
    Abstract: A contactless, three-dimensional fingerprint scanner apparatus, method, and system are described. The contactless fingerprint scanner can provide either, or both, topographical contrast of three-dimensional fingerprint features and optical contrast of a three-dimensional fingerprint surface. Data captured from scanning of a target with known geometric features mimicking fingerprint features can be examined as images or surface plots and analyzed for fidelity against the known target feature specifications to evaluate or validate device capture performance as well as interoperability. The target can be used by scanner vendors and designers to validate their devices, as well as to perform type certification.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: May 24, 2016
    Assignee: The United States of America, as represented by the Secretary of Commerce, The National Institute of Standards and Technology
    Inventors: Shahram Orandi, Fred Byers, Stephen Harvey, Michael D. Garris, Stephen S. Wood, John M. Libert, Jin Chu Wu
  • Patent number: 9341781
    Abstract: An apparatus and technique are used to fabricate optical microresonators. A fabrication chamber contains all fabrication materials and devices. The microresonators are fabricated from a glass preform mounted on a motorized spindle. A laser is focused onto the preform to partly or fully impinge on the preform. The laser's focus position is controlled by changing the positioning of a lens mounted on a translation stage. Piezoelectric control elements may be mounted to finished microresonators to control of nonlinear parametric oscillation and four-wave mixing effects of the microresonator, control of nonlinear optical stimulated Brillouin scattering and Raman effects of said microresonator and wideband tuning of the frequency spacing between the output modes of a nonlinear-Kerr-effect optical frequency comb generated with said microresonator.
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: May 17, 2016
    Assignee: The United States of America, as represented by the Secretary of Commerce The National Institute of Standards & Technology
    Inventors: Scott Diddams, Scott Papp, Pascal Del'Haye
  • Patent number: 9325729
    Abstract: Systems and methods for determining a safety level of a network vulnerable to attack from at least one origin to at least one target are described. Machines, components, and vulnerabilities in a network may be associated to one another. Degrees of similarity among the vulnerabilities may be determined and subsets of vulnerabilities may be grouped based on their determined degrees of similarity to one another. This data may be used to generate an attack graph describing exploitation of vulnerabilities and grouped vulnerabilities and defining vulnerability exploit condition relationships between at least one origin and at least one target. The attack graph may be analyzed using a k-zero day metric function to determine a safety level.
    Type: Grant
    Filed: July 7, 2014
    Date of Patent: April 26, 2016
    Assignees: George Mason Research Foundation, Inc., The United States of America, as represented by the Secretary of Commerce, The National Institute of Standards and Technology
    Inventors: Sushil Jajodia, Lingyu Wang, Steven Noel, Anoop Singhal
  • Patent number: 9324534
    Abstract: A cold cathode field emission electron source capable of emission at levels comparable to thermal sources is described. Emission in excess of 6 A/cm2 at 7.5 V/?m is demonstrated in a macroscopic emitter array. The emitter has a monolithic and rigid porous semiconductor nanostructure with uniformly distributed emission sites, and is fabricated through a room temperature process which allows for control of emission properties. These electron sources can be used in a wide range of applications, including microwave electronics and x-ray imaging for medicine and security.
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: April 26, 2016
    Assignee: THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF COMMERCE, THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
    Inventors: Fred Sharifi, Myung-Gyu Kang, Henri Lezec
  • Patent number: 9198645
    Abstract: Methods for the formation of liposomes that encapsulate reagents in a continuous 2-phase flow microfluidic network with precision control of size, for example, from 100 nm to 300 nm, by manipulation of liquid flow rates are described. By creating a solvent-aqueous interfacial region in a microfluidic format that is homogenous and controllable on the length scale of a liposome, fine control of liposome size and polydispersity can be achieved.
    Type: Grant
    Filed: July 21, 2004
    Date of Patent: December 1, 2015
    Assignee: The United States of America, as represented by the Secretary of Commerce of The National Institute of Standards and Technology
    Inventors: Andreas Jahn, Wyatt N. Vreeland, Laurie E. Locascio, Michael Gaitan
  • Patent number: 9138727
    Abstract: Core-shell nanoparticles and techniques for their synthesis are described herein. Generally, the nanoparticles comprise a core that includes iron and at least one shell disposed about the core that includes nickel. In certain versions, the nanoparticles are free of precious metals.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: September 22, 2015
    Assignee: THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF COMMERCE, THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
    Inventor: Lauren F. Greenlee
  • Patent number: 9140657
    Abstract: An embodiment of a method of detecting a J-coupling includes providing a polarized analyte adjacent to a vapor cell of an atomic magnetometer; and measuring one or more J-coupling parameters using the atomic magnetometer. According to an embodiment, measuring the one or more J-coupling parameters includes detecting a magnetic field created by the polarized analyte as the magnetic field evolves under a J-coupling interaction.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: September 22, 2015
    Assignees: The Regents of the University of California, The United States of America, as represented by the Secretary of Commerce, the National Institute of Standards and Technology
    Inventors: Micah P. Ledbetter, Charles W. Crawford, David E. Wemmer, Alexander Pines, Svenja Knappe, John Kitching, Dmitry Budker
  • Patent number: 9101939
    Abstract: Various aspects are described for selectivity capturing cells or bioparticles on designated surfaces in dielectrophoretic systems and processes. A particular adhesive composition is described for enhancing cell retention. In addition, certain permeable polyester membranes used in the systems and processes are also described.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: August 11, 2015
    Assignee: THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF COMMERCE, THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
    Inventors: Michael Gaitan, John T. Elliott, Jennifer Hong Gordon, Darwin R. Reyes-Hernandez, Petra S. Dittrich, Conni Hanke
  • Patent number: 9061907
    Abstract: A hydrogen storage material is provided, the hydrogen storage material comprises a hydride-forming solid disposed in a film, a hydrogen-diffusing solid media disposed in the film with the hydride-forming solid, and a high density of interfaces between the hydride-forming solid and the hydrogen-diffusing solid media in the film. The hydrogen storage material may be made by co-depositing the hydride-forming solid and the hydrogen-diffusing solid media to form the film having different solid phases of the hydride-forming solid and the hydrogen-diffusing solid media and a high density of interfaces therebetween.
    Type: Grant
    Filed: September 19, 2012
    Date of Patent: June 23, 2015
    Assignee: The United States of America as represented by the Secretary of Commerce The National Institute of Standards and Technology
    Inventors: Leonid A. Bendersky, Edwin J. Heilweil, Zhuopeng Tan