Patents Assigned to Thoratec Corporation
  • Patent number: 9512852
    Abstract: The present invention provides a rotary blood pump with both an attractive magnetic axial bearing and a hydrodynamic bearing. In one embodiment according to the present invention, a rotary pump includes an impeller assembly supported within a pump housing assembly by a magnetic axial bearing and a hydrodynamic bearing. The magnetic axial bearing includes at least two magnets oriented to attract each other. One magnet is positioned in the spindle of the pump housing while the other is disposed within the rotor assembly, proximate to the spindle. In this respect, the two magnets create an attractive axial force that at least partially maintains the relative axial position of the rotor assembly. The hydrodynamic bearing is formed between sloping surfaces that form tight clearances below the rotor assembly.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: December 6, 2016
    Assignee: Thoratec Corporation
    Inventors: Richard K. Wampler, David M. Lancisi
  • Publication number: 20160331881
    Abstract: A system and a method for starting a rotor of an implantable blood pump are described. For example, a blood pump system includes a rotary motor having a stator and a rotor. The rotor has permanent magnetic poles for magnetic levitation of the rotor, and the stator has a plurality of pole pieces arranged circumferentially at intervals. The blood pump system includes a controller configured to control a start phase of the rotor, wherein the start phase is prior to the rotor being positioned in a predefined geometric volume for pumping blood and wherein the start phase includes performing a rotation of the rotor by an angle larger than an angle corresponding to a quarter of an angular distance between two neighboring magnetic poles of the rotor.
    Type: Application
    Filed: July 26, 2016
    Publication date: November 17, 2016
    Applicant: Thoratec Corporation
    Inventors: Andre Siebenhaar, Andreas Fleischli
  • Patent number: 9492599
    Abstract: A molded interconnect device can carry a Hall sensor for transducing a position of a rotor of the implantable blood pump. The molded interconnect device includes one or more integrated electronic circuit traces configured to electrically connect the hall sensor with a printed circuit board of the implantable blood pump, and the molded interconnect device is configured to be mounted to the printed circuit board.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: November 15, 2016
    Assignee: THORATEC CORPORATION
    Inventors: Samuel Schimpf, Mark McChrystal, Joseph C. Stark, III, Andre Siebenhaar
  • Patent number: 9452249
    Abstract: A modular driveline includes a modular portion including a cable and a connector, the cable having terminations, and a percutaneous portion including a cable and a connector, the cable having terminations. The percutaneous portion connector couples to the modular portion connector, and cable terminations at the connectors are captured in the connectors by potting. The cable can include an inner member, conductors disposed about the inner member, a covering about the conductors, a layer extruded onto the covering, an armor braid over the extruded layer, and an outer jacket extruded over the armor braid.
    Type: Grant
    Filed: September 9, 2014
    Date of Patent: September 27, 2016
    Assignee: THORATEC CORPORATION
    Inventors: Keith H. Kearsley, Christopher J. Cotter, Justin A. Callaway, Maria D. Kulinski, John C. Layton, Ramesh B. Jayaraman
  • Patent number: 9446179
    Abstract: In various embodiments, a catheter pump is disclosed herein. The catheter pump can include an elongated catheter body having a distal portion including an expandable cannula having an inlet and an outlet. The expandable cannula can have a delivery profile and an operational profile larger than the delivery profile. An impeller assembly can include an impeller shaft, and an impeller body can include one or more blades. The impeller blades can draw blood into the cannula when rotated. Further, an expandable support can have a mounting portion disposed on the impeller shaft distal of the impeller body and a cannula contact portion for reducing a change in tip gap due to bending of the cannula. The cannula contact portion can be disposed distal of the mounting portion.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: September 20, 2016
    Assignee: THORATEC CORPORATION
    Inventors: Richard L. Keenan, Keif M. Fitzgerald
  • Patent number: 9433717
    Abstract: In order to produce a pulsatile blood flow pattern that includes time periods of relatively high blood flow rates and time periods of relatively low blood flow rates, the operating speed of a blood pump can be selectively controlled to produce an operating speed pattern that includes time periods of relatively high rotation speeds and periods of relatively low rotation speeds. For example, the blood pump is rotated at a first speed for a first period of time. The speed of the blood pump is then decreased from the first speed to a second speed and is operated at the second speed for a second amount of time. The speed of the blood pump is then decreased to a third speed for a third amount of time. If desired, the operating speed pattern can be repeated to continue the pulsatile blood flow pattern.
    Type: Grant
    Filed: January 8, 2015
    Date of Patent: September 6, 2016
    Assignee: THORATEC CORPORATION
    Inventor: Kevin Bourque
  • Patent number: 9427510
    Abstract: A system and a method for starting a rotor of an implantable blood pump are described. For example, a blood pump system includes a rotary motor having a stator and a rotor. The rotor has permanent magnetic poles for magnetic levitation of the rotor, and the stator has a plurality of pole pieces arranged circumferentially at intervals. The blood pump system includes a controller configured to control a start phase of the rotor, wherein the start phase is prior to the rotor being positioned in a predefined geometric volume for pumping blood and wherein the start phase includes performing a rotation of the rotor by an angle larger than an angle corresponding to a quarter of an angular distance between two neighboring magnetic poles of the rotor.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: August 30, 2016
    Assignee: THORATEC CORPORATION
    Inventors: Andre Siebenhaar, Andreas Fleischli
  • Patent number: 9421311
    Abstract: A catheter pump is disclosed herein. The catheter pump can include a catheter assembly that comprises a drive shaft and an impeller coupled to a distal end of the drive shaft. A driven assembly can be coupled to a proximal end of the drive shaft within a driven assembly housing. The catheter pump can also include a drive system that comprises a motor and a drive magnet coupled to an output shaft of the motor. The drive system can include a drive assembly housing having at least one magnet therein. Further, a securement device can be configured to prevent disengagement of the driven assembly housing from the drive assembly housing during operation of the pump.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: August 23, 2016
    Assignee: THORATEC CORPORATION
    Inventors: Adam R. Tanner, Richard L. Keenan, Doug M. Messner, Michael R. Butler
  • Patent number: 9410549
    Abstract: In this centrifugal blood pump apparatus, one permanent magnet is provided in one surface of an impeller, a second permanent magnet is provided in an inner wall of a blood chamber, a third permanent magnet is provided in the other surface of the impeller, and a fourth permanent magnet and a rotor for driving the impeller to rotate are provided, with an diaphragm being interposed. An amount of change in attractive force between the first permanent magnet and the second permanent magnet and an amount of change in attractive force between the third and fourth permanent magnets when the impeller is eccentric are made substantially equal to each other. Therefore, a levitation position of the impeller can always be maintained at a substantially central position in a housing.
    Type: Grant
    Filed: May 27, 2014
    Date of Patent: August 9, 2016
    Assignee: Thoratec Corporation
    Inventors: Takayoshi Ozaki, Hiroyuki Yamada, Kenichi Suzuki, Ken Sugiura
  • Patent number: 9387285
    Abstract: An implantable medical pump system can include a blood pump comprising a pump housing defining a passage therethrough and a rotor within the passage. The blood pump further includes one or more elements at least partially contained within the housing adapted to actuate the rotor to drive fluid though the passage. The pump housing includes at least one coupling feature. The system further includes an inflow cannula defining a lumen therethrough. The inflow cannula is adapted to be mechanically coupled to the at least one coupling feature.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: July 12, 2016
    Assignee: Thoratec Corporation
    Inventors: Justin Aron Callaway, Peter Soderholm
  • Patent number: 9381285
    Abstract: A centrifugal blood pump apparatus includes an impeller provided in a blood chamber, first and second permanent magnets provided in one surface and the other surface of the impeller respectively, a third permanent magnet provided in an inner wall of the blood chamber, and a magnetic element and a coil for driving the impeller to rotate with a diaphragm being interposed. First and second grooves for hydrodynamic bearing different in shape and depth from each other are formed in the inner wall of the blood chamber facing the impeller, and third and fourth grooves for hydrodynamic bearing different in shape and depth from each other are formed in the diaphragm facing the impeller. The second and fourth grooves for hydrodynamic bearing generate high hydrodynamic pressure when the impeller is activated to rotate, while the first and third grooves for hydrodynamic bearing generate high hydrodynamic pressure when the impeller steadily rotates.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: July 5, 2016
    Assignee: THORATEC CORPORATION
    Inventors: Takayoshi Ozaki, Hiroyuki Yamada, Kenichi Suzuki, Ken Sugiura
  • Patent number: 9382908
    Abstract: A centrifugal blood pump apparatus includes a plurality of permanent magnets (17) in an impeller (10) in a blood chamber (7), a plurality of coils (20) in a motor chamber (8), and a magnetic element (18) in each of the coils (20). The magnetic elements (18) are made shorter than the coils (20) to lower attractive force between the magnetic elements (18) and the permanent magnets (17) in the impeller (10), to set a large gap between the magnetic elements (18) and the permanent magnets (17). As a result, axial attractive force and negative rigidity can be lowered while required torque is satisfied.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: July 5, 2016
    Assignee: Thoratec Corporation
    Inventors: Takayoshi Ozaki, Hiroyuki Yamada, Ken Sugiura
  • Patent number: 9381288
    Abstract: Various embodiments of a fluid handling system are disclosed herein. For example, the fluid handling system can include a catheter assembly and a console configured to control the operation of the catheter assembly. A removable interface member can be configured to provide fluid and electrical communication between the catheter assembly and the console.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: July 5, 2016
    Assignee: THORATEC CORPORATION
    Inventors: Alan Schenck, Michael L. Green, Keif M. Fitzgerald, Paul F. Muller, Joseph P. Sullivan, Keith Schubert, Peter W. Bristol, Jeffrey Paul Mills, Paul C. Leonard, Richard L. Keenan
  • Patent number: 9371826
    Abstract: A centrifugal pump system having an impeller rotating with first and second magnetic structures on opposite surfaces. A levitation magnetic structure is disposed at a first end of a pump housing having a levitating magnetic field for axially attracting the first magnetic structure. A multiphase magnetic stator at a second end of the pump housing generates a rotating magnetic field for axially and rotationally attracting the second magnetic structure. A commutator circuit provides a plurality of phase voltages to the stator. A sensing circuit determines respective phase currents. A controller calculates successive commanded values for the phase voltages in response to the determined phase currents and a variable commutation angle. The angle is selected to correspond to an axial attractive force of the stator that maintains a levitation of the impeller at a centered position within the pumping chamber.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: June 21, 2016
    Assignee: THORATEC CORPORATION
    Inventors: Masamichi Yanai, Jeffrey H. Campau, Jason C. Nanna
  • Patent number: 9364593
    Abstract: An impeller includes a hub and a blade supported by the hub. The impeller has a stored configuration in which the blade is compressed so that its distal end moves towards the hub, and a deployed configuration in which the blade extends away from the hub. The impeller may be part of a pump for pumping fluids, such as blood, and may include a cannula having a proximal portion with a fixed diameter, and a distal portion with an expandable diameter. The impeller may reside in the expandable portion of the cannula. The cannula may have a compressed diameter which allows it to be inserted percutaneously into a patient. Once at a desired location, the expandable portion of the cannula may be expanded and the impeller expanded to the deployed configuration. A flexible drive shaft may extend through the cannula for rotationally driving the impeller within the patient.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: June 14, 2016
    Assignees: The Penn State Research Foundation, Thoratec Corporation
    Inventors: Mark W. McBride, David A. Boger, Robert L. Campbell, Gregory P. Dillon, Stephen A. Hambric, Robert F. Kunz, Boris Leschinsky, Thomas M. Mallison, James P. Runt, Justin M. Walsh
  • Patent number: 9364592
    Abstract: An impeller includes a hub and at least one blade supported by the hub. The impeller has a stored configuration in which the blade is compressed so that its distal end moves towards the hub, and a deployed configuration in which the blade extends away from the hub. The impeller may be part of a pump for pumping fluids, such as pumping blood within a patient. A blood pump may include a cannula having a proximal portion with a fixed diameter, and a distal portion with an expandable diameter. The impeller may reside in the expandable portion of the cannula. The cannula may have a compressed diameter which allows it to be inserted percutaneously into a patient. Once at a desired location, the expandable portion of the cannula may be expanded and the impeller expanded to the deployed configuration. A flexible drive shaft may extend through the cannula for rotationally driving the impeller within the patient's body.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: June 14, 2016
    Assignees: The Penn State Research Foundation, Thoratec Corporation
    Inventors: Mark W. McBride, David A. Boger, Robert L. Campbell, Gregory P. Dillon, Stephen A. Hambric, Robert F. Kunz, Boris Leschinsky, Thomas M. Mallison, James P. Runt, Justin M. Walsh
  • Patent number: 9366261
    Abstract: This centrifugal blood pump device comprises an impeller which is provided within a blood chamber, a permanent magnet which is provided to one surface of the impeller, a permanent magnet which is provided to the inner wall of the blood chamber, permanent magnets which are provided to the other surface of the impeller, and multiple sets of magnetic bodies and coils, which are disposed within a motor chamber and which rotationally drive the impeller with a partition wall located between the impeller and the sets of magnetic bodies and coils. The magnetic bodies are formed in a solid cylindrical shape. The configuration enables the impeller to be smoothly activated for rotation by controlling a coil current.
    Type: Grant
    Filed: January 9, 2013
    Date of Patent: June 14, 2016
    Assignee: Thoratec Corporation
    Inventors: Hiroyuki Yamada, Ken Sugiura
  • Patent number: 9358329
    Abstract: A catheter pump is provided that includes a rotatable impeller and an elongate cannula. The elongate cannula has a mesh that has a plurality of circumferential members disposed about the impeller. The elongate cannula has a plurality of axial connector extending between a proximal side of a distal circumferential member and a distal side of a proximal circumferential member. The circumferential members are radially self-expandable. The cannula is configured to minimize fracture within at least in the distal zone of the mesh as the elongated cannula moves into a sheathing device.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: June 7, 2016
    Assignee: THORATEC CORPORATION
    Inventors: Keif M. Fitzgerald, Richard L. Keenan, William J. Harrison
  • Patent number: 9327067
    Abstract: An impeller for a pump is disclosed herein. The impeller can include a hub having a fixed end and a free end. The impeller can also have a plurality of blades supported by the hub. Each blade can have a fixed end coupled to the hub and a free end. The impeller can have a stored configuration and a deployed configuration, the blades in the deployed configuration extending away from the hub, and the blades in the stored configuration being compressed against the hub.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: May 3, 2016
    Assignee: THORATEC CORPORATION
    Inventors: Zijing Zeng, Phyllis Yuen, Michael R. Butler
  • Patent number: 9308302
    Abstract: A catheter pump assembly is provided that includes a proximal a distal portion, a catheter body, an impeller, and a flow modifying structure. The catheter body has a lumen that extends along a longitudinal axis between the proximal and distal portions. The impeller is disposed at the distal portion. The impeller includes a blade with a trailing edge. The flow modifying structure is disposed downstream of the impeller. The flow modifying structure has a plurality of blades having a leading edge substantially parallel to and in close proximity to the trailing edge of the blade of the impeller and an expanse extending downstream from the leading edge. In some embodiments, the expanse has a first region with higher curvature and a second region with lower curvature. The first region is between the leading edge and the second region.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: April 12, 2016
    Assignee: THORATEC CORPORATION
    Inventor: Zijing Zeng