Patents Assigned to Tokyo Electron Limited
  • Patent number: 10707100
    Abstract: A substrate processing method includes: selectively forming a first film on a surface of a substrate disposed in a processing container by plasma enhanced vapor deposition (PECVD); and forming a second film by atomic layer deposition (ALD) in a region of the substrate where the first film does not exist. The second film is formed by repeatedly performing a sequence including: forming a precursor layer on the surface of the substrate; purging an interior of the processing container after forming of the precursor; converting the precursor layer into the second film; and purging a space in the processing container after the converting. A plasma processing apparatus performing the method is also provided.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: July 7, 2020
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Masahiro Tabata, Toru Hisamatsu
  • Patent number: 10707053
    Abstract: A plasma processing method includes applying a pulse wave of high frequency electric power for plasma generation and a pulse wave of high frequency electric power for bias whose frequency is lower than that of the high frequency electric power for plasma generation on the mounting table; and controlling the pulse wave of the high frequency electric power for plasma generation and the pulse wave of the high frequency electric power for bias such that a predetermined phase difference is generated between the pulse wave of the high frequency electric power for plasma generation and the pulse wave of the high frequency electric power for bias, and a duty ratio of the high frequency electric power for plasma generation becomes greater than or equal to a duty ratio of the high frequency electric power for bias.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: July 7, 2020
    Assignee: Tokyo Electron Limited
    Inventors: Masafumi Urakawa, Koichi Nagami
  • Patent number: 10707088
    Abstract: A method of processing a target object is provided. The target object has an etching target layer, an organic film on the etching target layer and a mask on the organic film. The organic film includes a first layer and a second layer, the mask is provided on the first layer, the first layer is provided on the second layer, and the second layer is provided on the etching target layer. The method includes generating plasma of a first gas within a processing vessel of a plasma processing apparatus in which the target object is accommodated; etching the first layer with the plasma of the first gas and the mask until the second layer is exposed; and conformally forming a protection film on a side surface of the first layer; and generating plasma of a second gas and removing the mask with the plasma of the second gas.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: July 7, 2020
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Shinya Morikita, Takanori Banse, Yuta Seya, Ryosuke Niitsuma
  • Patent number: 10707098
    Abstract: A substrate processing apparatus includes a substrate holding device, a rotation mechanism, a drying liquid supply nozzle, a movement mechanism, a flow rate control mechanism, and a control device including circuitry which controls one or more of the rotation mechanism, movement mechanism and flow rate control mechanism such that the drying liquid forms a drying liquid flow line having distance (L) equal to or less than preset upper limit distance (M), where when a liquid contact point is position at which the drying liquid discharged from the nozzle reaches the substrate, the flow line is formed when the liquid contact point is moved from a center portion of the substrate toward a peripheral edge portion of the substrate, and the distance (L) of the flow line is measured from center of the liquid contact point to an edge of the flow line on a rotation center side of the substrate.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: July 7, 2020
    Assignee: TOKYO ELECTRON LIMITED
    Inventor: Hiroshi Marumoto
  • Patent number: 10707070
    Abstract: Methods and systems for coating a substrate with a fluid are described. In an embodiment, a method may include receiving a substrate in a substrate processing unit, the substrate having one or more physical features formed on a surface of the substrate. The method may include introducing a gas into an environment of the surface of the substrate. Additionally, the method may include applying a fluid to the surface of the substrate, wherein the gas facilitates distribution of the fluid relative to the one or more physical features formed on the surface of the substrate. The method may further include controlling one or more processing parameters related to distribution of the fluid in order to achieve device formation objectives.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: July 7, 2020
    Assignee: Tokyo Electron Limited
    Inventor: Hoyoung Kang
  • Patent number: 10707091
    Abstract: A plasma etching method for plasma-etching an object including an etching target film and a patterned mask. The plasma etching method includes a first step of plasma-etching the etching target film using the mask, and a second step of depositing a silicon-containing film using plasma of a silicon-containing gas on at least a part of a side wall of the etching target film etched by the first step.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: July 7, 2020
    Assignee: Tokyo Electron Limited
    Inventors: Keiji Kitagaito, Fumiya Kobayashi, Maju Tomura
  • Patent number: 10707102
    Abstract: A substrate processing apparatus includes a substrate holding unit configured to hold a substrate; a first processing liquid nozzle configured to supply a first processing liquid to a peripheral portion of the substrate; a second processing liquid nozzle configured to supply a second processing liquid, the temperature of which is lower than that of the first processing liquid, to the peripheral portion of the substrate; a first gas supply port configured to supply a first gas at a first temperature to a first gas supplied place on the peripheral portion of the substrate; and a second gas supply port configured to supply a second gas at a second temperature lower than the first temperature to a place closer to the center in the radial direction as compared to the first gas supplied place with respect to the substrate.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: July 7, 2020
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Hiromitsu Namba, Fitrianto, Yoichi Tokunaga, Yoshifumi Amano
  • Publication number: 20200211892
    Abstract: A mounting table is provided. The mounting table includes a base having a first flow path, a recess, and a second flow path connected to the recess, and a variable control mechanism configured to variably control a contact area between a target object disposed on the base and a mounting surface for mounting thereon the target object by filling and discharging fluid into and from the recess through the second flow path.
    Type: Application
    Filed: December 27, 2019
    Publication date: July 2, 2020
    Applicant: TOKYO ELECTRON LIMITED
    Inventor: Masakatsu KASHIWAZAKI
  • Publication number: 20200211867
    Abstract: A plasma processing apparatus includes a storage; processors; a liquid supply which supplies, into the storage, at least a first liquid composed of a processing liquid or source liquids for composing the processing liquid; a detector which detects a value of a parameter indicating a state of the first liquid supplied into the storage or a state of the processing liquid in the storage; and a controller which controls the processors to perform a liquid processing in sequence. The controller determines, based on a detection result of the value of the parameter, whether it is possible to supply the processing liquid continuously into a preset number of processors concurrently under a condition requested by the processors, and, if not, the controller performs a simultaneous processing restricting control of reducing a number of processors which are supposed to perform the liquid processing concurrently to be lower than the preset number.
    Type: Application
    Filed: December 27, 2019
    Publication date: July 2, 2020
    Applicant: Tokyo Electron Limited
    Inventors: Tomiyasu Maezono, Sadamichi Mori, Kouji Takuma, Chikara Nobukuni, Keigo Satake, Shinji Sugahara, Masahiro Yoshida
  • Publication number: 20200211886
    Abstract: In a measurement method, a terminal is brought into contact with an electrode in an electrostatic chuck in contact with a substrate that is grounded. Further, the terminal, the electrostatic chuck and the substrate are fixed, and a current value and a voltage value are measured using an ammeter and a voltmeter, respectively, that are connected to the terminal. In addition, whether or not the terminal and the electrode are electrically connected is determined from a slope of the current value and/or a peak current value based on the measured current value and the voltage value.
    Type: Application
    Filed: December 27, 2019
    Publication date: July 2, 2020
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Ryusei KASHIMURA, Masanori SATO, Tetsu TSUNAMOTO
  • Publication number: 20200211823
    Abstract: A plasma processing apparatus includes: a processing container; an electrode that places a substrate thereon within the processing container; a plasma generation source that supplies plasma into the processing container; a bias power supply that supplies bias power to the electrode; a part exposed to the plasma in the processing container; a DC power supply that supplies a DC voltage to the part; a controller that executes a process including a first control procedure in which a first state in which the DC voltage has a first voltage value and a second state in which the DC voltage has a second voltage value higher than the first voltage value are periodically repeated, and the first voltage value is applied in a partial period in each cycle of a potential of the electrode, and the second voltage value is applied such that the first state and the second state are continuous.
    Type: Application
    Filed: December 27, 2019
    Publication date: July 2, 2020
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Ryuji HISATOMI, Chishio KOSHIMIZU, Michishige SAITO
  • Publication number: 20200211885
    Abstract: A substrate placing table according to an exemplary embodiment includes a base and an electrostatic chuck provided on the base. The electrostatic chuck includes a lamination layer portion, an intermediate layer, and a covering layer. The lamination layer portion is provided on the base. The intermediate layer is provided on the lamination layer portion. The covering layer is provided on the intermediate layer. The lamination layer portion includes a first layer, an electrode layer, and a second layer. The first layer is provided on the base. The electrode layer is provided on the first layer. The second layer is provided on the electrode layer. The intermediate layer is provided between the second layer and the covering layer and is in close contact with the second layer and the covering layer. The second layer is a resin layer. The covering layer is ceramics.
    Type: Application
    Filed: December 19, 2019
    Publication date: July 2, 2020
    Applicant: Tokyo Electron Limited
    Inventors: Satoshi TAGA, Naoyuki SATOH, Tatsuo NISHITA
  • Patent number: 10700006
    Abstract: There is provided a method for manufacturing Ni wiring. The method includes forming an Ni film on a surface of a substrate having a recess formed thereon by CVD or ALD by using an Ni compound as a film forming material and NH3 gas and H2 gas as reduction gases to partially fill the recess. The method further includes annealing the substrate to make the Ni film on the surface of the substrate and on a side surface of the recess reflow into the recess.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: June 30, 2020
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Hiroaki Kawasaki, Takashi Matsumoto, Hiroyuki Nagai, Ryota Ifuku
  • Patent number: 10699910
    Abstract: A substrate liquid treatment method in one embodiment includes, storing a phosphoric acid solution in a processing bath provided in a liquid treatment unit, and immersing a substrate into the stored phosphoric acid solution to process the substrate, draining a phosphoric acid solution at a first drainage flow rate from the liquid treatment unit, and supplying a phosphoric acid solution to the liquid treatment unit, in a first time period in which the substrate is immersed in the phosphoric acid solution in the processing bath, and draining a phosphoric acid solution at a second drainage flow rate different from the first drainage flow rate, from the liquid treatment unit, and supplying a phosphoric acid solution to the liquid treatment unit, in a second time period in which the substrate is immersed in the phosphoric acid solution in the processing bath.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: June 30, 2020
    Assignee: Tokyo Electron Limited
    Inventor: Hideaki Sato
  • Patent number: 10700009
    Abstract: A method is provided for void-free Ru metal filling of features in a substrate. The method includes providing a substrate containing features, depositing a Ru metal layer in the features, removing the Ru metal layer from a field area around an opening of the features, and depositing additional Ru metal in the features, where the additional Ru metal is deposited in the features at a higher rate than on the field area. According to one embodiment, the additional Ru metal is deposited until the features are fully filled with Ru metal.
    Type: Grant
    Filed: October 1, 2018
    Date of Patent: June 30, 2020
    Assignee: Tokyo Electron Limited
    Inventors: Kai-Hung Yu, Nicholas Joy, Eric Chih Fang Liu, David L. O'Meara, David Rosenthal, Masanobu Igeta, Cory Wajda, Gerrit J. Leusink
  • Patent number: 10699883
    Abstract: A plasma processing apparatus according to an embodiment includes a processing container, a mounting table, a plurality of heaters, and a power supply device. The mounting table is provided in the processing container. The plurality of heaters are provided in the mounting table. The power supply device supplies electric power to the plurality of heaters. The power supply device includes a plurality of transformers and a plurality of zero-cross control type solid state relays (SSRs). The plurality of transformers are configured to step down a voltage from an alternating-current power source. Each of the plurality of transformers includes a primary coil and a secondary coil. The primary coil is connected to the alternating-current power source. Each of the plurality of SSRs is provided between one corresponding heater among the plurality of heaters and the secondary coil of one corresponding transformer among the plurality of transformers.
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: June 30, 2020
    Assignee: TOKYO ELECTRON LIMITED
    Inventor: Satoru Teruuchi
  • Patent number: 10699911
    Abstract: Plasma processing methods that provide for conformal etching of silicon nitride while also providing selectivity to another layer are described. In one embodiment, an etch is provided that utilizes gases which include fluorine, nitrogen, and oxygen, for example a gas mixture of SF6, N2 and O2 gases. Specifically, a plasma etch utilizing SF6, N2 and O2 gases at high pressure with no bias is provided. The process accelerates silicon nitride etching by chemical reactions of [NO]x molecules from the plasma and [N] atoms from silicon nitride film. The etch provides a conformal (isotropic) etch that is selective to other materials such as silicon and silicon oxides (for example, but not limited to, silicon dioxide).
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: June 30, 2020
    Assignee: Tokyo Electron Limited
    Inventors: Erdinc Karakas, Sonam D. Sherpa, Alok Ranjan
  • Patent number: 10700166
    Abstract: A nozzle cleaning device is capable of uniformly cleaning a nozzle from a front end of the nozzle to an upper part thereof. The nozzle cleaning device includes a storage tank, a liquid discharging portion and an overflow discharging portion. The storage tank has a cylindrical inner peripheral surface and is configured to store therein a cleaning liquid that cleans a nozzle used in a substrate process. The liquid discharging portion is configured to discharge the cleaning liquid into the storage tank toward a position eccentric with respect to a central axis of the cylindrical inner peripheral surface to store the cleaning liquid within the storage tank and configured to form a vortex flow of the cleaning liquid revolving within the storage tank. The overflow discharging portion is configured to discharge the cleaning liquid that overflows the storage tank.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: June 30, 2020
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Yoshihiro Kai, Shinya Ishikawa, Yuji Kamikawa, Shuichi Nagamine, Naoki Shindo
  • Patent number: 10699919
    Abstract: A coating processing apparatus includes: a substrate holding part for horizontally holding a substrate and configured to rotate around a vertical axis; a coating liquid supply part for supplying a coating liquid onto the substrate; a cup body surrounding the substrate; an annular exhaust path formed along a circumferential direction of the cup body between an inner peripheral surface of the cup body and an inner member installed inside the cup body; a coating liquid collecting member installed to cover the exhaust path and having an opening, and configured to collect the coating liquid scattering from the substrate; at least one solvent storage portion formed in the coating liquid collecting member and configured to store a first solvent for dissolving the coating liquid collected in the coating liquid collecting member; and a solvent supply part for supplying the first solvent to the at least one solvent storage portion.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: June 30, 2020
    Assignee: TOKYO ELECTRON LIMITED
    Inventor: Ryoichi Uemura
  • Publication number: 20200203129
    Abstract: In a plasma processing apparatus according to an embodiment, a first radio-frequency power supply is connected to a lower electrode of a substrate support provided within a chamber via a first matcher. The first radio-frequency power supply supplies first radio-frequency power for bias to the lower electrode. The second radio-frequency power supply is connected to a load via a second matcher. The second radio-frequency power supply supplies second radio-frequency power for plasma generation. A controller of the second matcher sets an impedance of a matching circuit of the second matcher such that a reflection from the load of the second radio-frequency power supply is reduced in a designated partial period within each cycle of the first radio-frequency power.
    Type: Application
    Filed: December 18, 2019
    Publication date: June 25, 2020
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Chishio Koshimizu, Takashi Dokan, Shinji Kubota