Patents Assigned to University of Maryland, College Park
  • Patent number: 11186626
    Abstract: This disclosure provides a method for preventing, treating, or managing an ebolavirus infection in a subject, where the method includes administering to a subject in need thereof an effective amount of at least one pan-ebolavirus internal fusion loop antibody or antigen-binding fragment thereof, wherein the binding domain specifically binds to the epitope on two or more ebolavirus species or strains.
    Type: Grant
    Filed: October 9, 2017
    Date of Patent: November 30, 2021
    Assignees: INTEGRATED BIOTHERAPEUTICS, INC., UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Mohammad Javad Aman, Katie A. Howell, Frederick Wayne Holtsberg, Xuelian Zhao, Yuxing Li
  • Publication number: 20210355499
    Abstract: The present disclosure relates to a single stranded RNA vector suitable for introducing a therapeutic agent, such as a peptide, a protein or a small RNA, into a host plant. The vector does not encode for any movement protein or coat protein, but is capable of capable of systemic and phloem-limited movement and replication within the host plant.
    Type: Application
    Filed: May 11, 2021
    Publication date: November 18, 2021
    Applicant: University of Maryland, College Park
    Inventor: Anne Elizabeth Simon
  • Patent number: 11174478
    Abstract: The present invention relates to a method for concentrating a biological sample containing nucleic acids by using magnetic chitosan microparticles and subsequently performing a PCR reaction on the nucleic acids captured on the microparticles. The chitosan microparticles added to the biological sample at a PCR compatible pH are mechanically agitated to provide for cell lysis and simultaneous DNA capture, and then serve as a solid support for the nucleic acid template during the PCR reaction. As the chitosan microparticles are utilized for lysis and the nucleic acids do not need to be removed from the microparticles before PCR, the ease of the sample preparation procedure is dramatically improved.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: November 16, 2021
    Assignees: University of Maryland, College Park, Canon U.S.A., Inc.
    Inventors: Ian M. White, Srinivasa Raghavan, Kunal R. Pandit, Imaly Nanayakkara, Weidong Cao
  • Patent number: 11171013
    Abstract: Provided is a method of selectively etching a substrate comprising at least one cycle of: depositing a chemical precursor on a surface of the substrate to form a chemical precursor layer on the substrate, the substrate comprising a first portion and a second portion, wherein the first and the second portion are of a different composition; selectively removing the chemical precursor layer and at least a part of the first portion of the substrate; and repeating the cycle until the first portion of the substrate is substantially or completely removed, wherein deposition of the chemical precursor and selective removal of the chemical precursor layer and at least a part of the first portion of the substrate are performed under a plasma environment.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: November 9, 2021
    Assignee: University of Maryland, College Park
    Inventors: Gottlieb S. Oehrlein, Kang-Yi Lin, Chen Li
  • Publication number: 20210330206
    Abstract: An apparatus for estimating bio-information of a user may include a first sensor configured to measure a first signal from the user; a second sensor configured to measure a second signal from the user; and a processor configured to obtain a first characteristic point from the first signal; obtain a second characteristic point from the second signal based on the first characteristic point and a pre-defined probability distribution function; and estimate the bio-information of the user based on the second characteristic point.
    Type: Application
    Filed: April 12, 2021
    Publication date: October 28, 2021
    Applicants: SAMSUNG ELECTRONICS CO., LTD., University of Maryland, College Park
    Inventors: Dae Geun JANG, Sungtae SHIN, Jin-Oh HAHN, Ui Kun KWON, Youn Ho KIM, Peyman YOUSEFIAN
  • Patent number: 11157826
    Abstract: The disclosure describes various aspects related to enabling effective multi-qubit operations, and more specifically, to techniques for enabling parallel multi-qubit operations on a universal ion trap quantum computer. In an aspect, a method of performing quantum operations in an ion trap quantum computer or trapped-ion quantum system includes implementing at least two parallel gates of a quantum circuit, each of the at least two parallel gates is a multi-qubit gate, each of the at least two parallel gates is implemented using a different set of ions of a plurality of ions in a ion trap, and the plurality of ions includes four or more ions. The method further includes simultaneously performing operations on the at least two parallel gates as part of the quantum operations. A trapped-ion quantum system and a computer-readable storage medium corresponding to the method described above are also disclosed.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: October 26, 2021
    Assignees: UNIVERSITY OF MARYLAND, COLLEGE PARK, IONQ, INC.
    Inventors: Caroline Figgatt, Aaron Ostrander, Norbert M. Linke, Kevin A. Landsman, Daiwei Zhu, Dmitri Maslov, Christopher Monroe
  • Publication number: 20210324365
    Abstract: A method of system of forming a biopolymer hydrogel structure includes a mold loaded with a cation. At least a portion of the surface of the mold is exposed to a solution comprising a gellable polymer such as alginate. An electric potential is applied to the mold so that the cation therein and the gellable polymer migrate via electrophoresis toward the surface portion, thereby interacting and forming a hydrogel structure adjacent to the surface portion.
    Type: Application
    Filed: April 20, 2021
    Publication date: October 21, 2021
    Applicant: University of Maryland, College Park
    Inventors: Srinivasa R. Raghavan, So Hyun Ahn, Ankit Gargava
  • Patent number: 11152756
    Abstract: The disclosure describes aspects of laser cavity repetition rate tuning and high-bandwidth stabilization of pulsed lasers. In one aspect, an output optical coupler is described that includes a cavity output coupler mirror, a piezoelectric actuator coupled to the cavity output coupler mirror, a locking assembly within which the cavity output coupler mirror and the piezoelectric actuator are positioned, and one or more components coupled to the locking assembly. The components are configured to provide multiple positional degrees of freedom for tuning a frequency comb spectrum of the pulsed laser (e.g., tuning a repetition rate) by adjusting at least one position of the locking assembly with the cavity output coupler mirror. A method of adjusting an output optical coupler in a pulsed laser is also described. These techniques may be used in different applications, including quantum information processing.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: October 19, 2021
    Assignees: UNIVERSITY OF MARYLAND, COLLEGE PARK, IONQ, INC.
    Inventors: Christopher Monroe, Kai Hudek, Jonathan Mizrahi, Marko Cetina, Sarah Margaret Kreikemeier, Michael Goldman, Kristin Beck
  • Patent number: 11149082
    Abstract: The present disclosure relates to multispecific antibodies targeting the human immunodeficiency virus-1 (HIV-1) envelope, methods for their production, pharmaceutical compositions containing said antibodies and uses thereof in treatment and prevention of HIV infection.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: October 19, 2021
    Assignees: University of Maryland, College Park, The United States of America, As Represented By, International AIDS Vaccine Initiative
    Inventors: Javier Guenaga, Yuxing Li, James Steinhardt, John R. Mascola
  • Patent number: 11145896
    Abstract: Solid-state lithium ion electrolytes of lithium potassium tantalate based compounds are provided which contain an anionic framework capable of conducting lithium ions. An activation energy of the lithium metal silicate composites is from 0.12 to 0.45 eV and conductivities are from 10?3 to 40 mS/cm at 300K. Compounds of specific formulae are provided and methods to alter the materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes are also provided. Electrodes containing the lithium potassium tantalate based materials and batteries with such electrodes are also provided.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: October 12, 2021
    Assignees: UNIVERSITY OF MARYLAND, COLLEGE PARK, TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Yifei Mo, Qiang Bai, Xingfeng He, Chen Ling
  • Patent number: 11143555
    Abstract: In a spectrometry setup where a first spectral component dominates a second spectral component having a different wavelength, diffraction of the first spectral component as it passes through the optical train of the spectrometer can produce spectral noise that obscures detection of the second spectral component. To reduce the spectral noise, the light from the spectrometer is subject to spatial filtering or interference such that effects of the first spectral component are removed, or at least reduced. The second spectral component can then be more readily detected by a detector after the spatial filtering or interference. In embodiments, the spatial filtering or interference may be provided by a filtering module, which may be installed in existing spectrometry setups or form part of a unitary spectrometry system.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: October 12, 2021
    Assignee: UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Giuliano Scarcelli, Eitan Edrei
  • Patent number: 11130256
    Abstract: A super strong and tough densified wood structure is formed by subjecting a cellulose-based natural wood material to a chemical treatment that partially removes lignin therefrom. The treated wood retains lumina of the natural wood, with cellulose nanofibers of cell walls being aligned. The treated wood is then pressed in a direction crossing the direction in which the lumina extend, such that the lumina collapse and any residual fluid within the wood is removed. As a result, the cell walls become entangled and hydrogen bonds are formed between adjacent cellulose nanofibers, thereby improving the strength and toughness of the wood among other mechanical properties. By further modifying, manipulating, or machining the densified wood, it can be adapted to various applications.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: September 28, 2021
    Assignee: UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Liangbing Hu, Mingwei Zhu, Jianwei Song
  • Patent number: 11131029
    Abstract: Hydrofluoroolefin (HFO) fluid can be transported through an electrochemical device, which has a proton exchange membrane (PEM) disposed between a pair of gas-permeable electrodes that include respective catalysts. At an inlet side, the catalyst facilitates reaction of HFO with hydrogen carrier gas. The resulting cation is transported across PEM in the presence of an electric field applied to the electrodes. At an outlet side, the catalyst of the opposing electrode facilitates dissociation of the cation back into HFO and hydrogen. In some embodiments, the transported HFO has a higher pressure than that before the electrochemical device. In some embodiments, the electrochemical device can be operated in reverse to expand HFO fluid and/or to recapture power. The electrochemical device can thus be used as a compressor or expander for vapor-phase HFO or as a pump or expander for liquid-phase HFO, for example, in power generation or heating/cooling cycles.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: September 28, 2021
    Assignee: UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Chunsheng Wang, Ye Tao, K. Reinhard Radermacher, Yunho Hwang
  • Publication number: 20210296697
    Abstract: Electrodes containing lithium phosphate derivative materials and batteries with such electrodes are provided. The lithium phosphate derivative compounds contain an anionic framework capable of conducting lithium ions and have an activation energy from 0.2 to 0.45 eV and conductivities from 0.01 to 10 mS/cm at 300K. Materials of specific formulae are provided and methods to alter the composite materials with inclusion of aliovalent ions shown.
    Type: Application
    Filed: June 9, 2021
    Publication date: September 23, 2021
    Applicants: UNIVERSITY OF MARYLAND, COLLEGE PARK, TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Yifei MO, Qiang BAI, Xingfeng HE, Chen LING
  • Publication number: 20210296698
    Abstract: Solid-state lithium ion electrolytes of lithium phosphate derivative compounds are provided which contain an anionic framework capable of conducting lithium ions. The activation energy of the lithium phosphate deravitive compounds is from 0.18 to 0.34 eV and conductivities are from 10?3 to 12 mS/cm at 300K. Materials of specific formulae are provided and methods to alter the composite materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes are also provided. Electrodes containing the lithium phosphate derivative materials and batteries with such electrodes are also provided.
    Type: Application
    Filed: June 9, 2021
    Publication date: September 23, 2021
    Applicants: UNIVERSITY OF MARYLAND, COLLEGE PARK, TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Yifei MO, Qiang BAI, Xingfeng HE, Chen LING
  • Patent number: 11115010
    Abstract: A dielectric structure is loaded with energy (e.g., charge), which is retained therein until a trigger causes rapid discharge of the loaded energy and generation of an accompanying electromagnetic pulse (EMP). By appropriate design of the dielectric structure and/or trigger, the waveform of the EMP resulting from the rapid discharge can be tailored. Features of the dielectric structure can be modified and/or other devices can be coupled to the dielectric structure to also tailor the EMP, for example, to provide directionality. A modeling unit can predict the discharge in the dielectric structure and/or resulting EMP. The modeling unit can be used to determine charge density spatial distribution within the dielectric structure, shape of the dielectric structure, and/or actuation timing/location necessary to yield a desired waveform for the EMP emanating from the dielectric structure upon discharge.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: September 7, 2021
    Assignee: UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Timothy W. Koeth, George Hine
  • Patent number: 11111306
    Abstract: Antibodies and antigen binding fragments that specifically bind to IL-7R? are disclosed. Nucleic acids encoding the antibodies and antigen binding fragments, and vectors including the nucleic acid molecules are also provided. Methods for detecting a ca cancer or a cell that expresses IL-7R? using the antibodies and antigen binding fragments are disclosed, as is the use of the antibodies and antigen binding fragments to prevent and/or treat a subject with a cancer that expresses IL-7R?, such as acute lymphoblastic leukemia.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: September 7, 2021
    Assignees: The United States of America, as represented by the Secretary, Department of Health and Human Services, University of Maryland, College Park
    Inventors: Scott Durum, Julie Hixon, Wen Qing Li, Scott Walsh, Lila Kashi
  • Patent number: 11101915
    Abstract: The subject method for delivering power to a moving target wirelessly via electromagnetic time reversal can find applications in wireless electrical transmission to portable devices, wireless heating of portable devices, novel wirelessly powered accelerometers, hyperthermic treatment of cancers, and many other applications. The subject non-linear time reversed electromagnetic waves based wireless power transmission (WPT) system targets either a single linear or non-linear object where a selective targeting between two diodes has been demonstrated simultaneously with different degrees of non-linearity in a three-dimensional ray-chaotic billiard model. A dual-purpose rectenna with harmonic generation for wireless power transfer by non-linear time-reversal has been designed for the subject system using the Schottky diode.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: August 24, 2021
    Assignee: University of Maryland, College Park
    Inventors: Steven Mark Anlage, Frank Cangialosi, Tyler Grover, Andrew Simon, Scott Roman, Liangcheng Tao
  • Publication number: 20210257658
    Abstract: Disclosed is a method of fabricating a battery or battery component having a solid state electrolyte. A scaffold is provided, the scaffold comprising: a dense central layer comprising a dense electrolyte material, the dense central layer having a first surface, and a second surface opposite the first surface; a first porous layer comprising a first porous electrolyte material, the first porous layer disposed on the first surface of the dense central layer, the porous electrolyte material having a first network of pores therein; wherein each of the dense electrolyte material and the first porous electrolyte material are independently selected from garnet materials. Carbon is infiltrated into the first porous layer. Sulfur is also infiltrated into the first porous layer. The battery component may be used in a variety of battery configurations.
    Type: Application
    Filed: February 24, 2021
    Publication date: August 19, 2021
    Applicant: UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Eric D. WACHSMAN, Liangbing HU, Chunsheng WANG, Yang WEN, Kun FU, Fudong HAN, Chengwei WANG, Venkataraman THANGADURAI, Gregory Thomas HITZ, Dennis MCOWEN
  • Publication number: 20210244802
    Abstract: The present invention relates to methods of treating or preventing a bacterial disease or infection, antibacterial compositions, and antibacterial surfaces, including an isolated polypeptide comprising an enzymatically active domain (EAD) of a Bacillus bacteriophage endolysin.
    Type: Application
    Filed: May 16, 2019
    Publication date: August 12, 2021
    Applicants: University of Maryland, College Park, The United States of America, as Represented by the Secretary of the Navy
    Inventors: Daniel C. Nelson, Irina V. Etobayeva