Patents Assigned to UNIVERSITY OF NORTH CAROLINA CHARLOTTE
  • Patent number: 10727669
    Abstract: Apparatuses including power electronics circuitry are provided. The power electronics circuitry includes at least one power converter that is coupled to a DC bus. Moreover, in some embodiments, the at least one power converter is configured to regulate a voltage of the DC bus. Related methods of operating an apparatus including power electronics circuitry are also provided.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: July 28, 2020
    Assignees: Duke Energy Corporation, The University of North Carolina at Charlotte
    Inventors: Stuart Laval, Aleksandar Vukojevic, Somasundaram Essakiappan, Madhav Manjrekar, Ehab Shoubaki
  • Patent number: 10718597
    Abstract: The present disclosure is directed to significantly improving the adiabatic shear banding susceptibility of pure refractory metals as well as overcoming the physical dimension limitations when making kinetic energy penetrators. These improvements may be achieved by arranging interlayers between plasticly deformed refractory metal material layers. Disclosed herein are methods of making material for kinetic energy penetrator applications, the methods comprising: severely plasticly deforming a refractory metal material until the grain size of the refractory metal material is within one of ultrafine grain and nanocrystalline regimes; arranging an interlayer material adjacent the refractory metal material; and diffusion bonding the interlayer material to the refractory metal material.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: July 21, 2020
    Assignee: The University of North Carolina at Charlotte
    Inventors: Qiuming Wei, Xiaoxue Chen
  • Patent number: 10704855
    Abstract: A system and method for testing firearm operating characteristics are provided using a force testing apparatus coupled to all or a portion of the firearm. Of significance, the system and method are configured to test the interaction(s) of multiple firearm components during operation without a live round such that firearm component defects, manufacturing tolerance problems, misalignments, and the like can be discovered during or subsequent to manufacture and prior to use.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: July 7, 2020
    Assignee: The University of North Carolina at Charlotte
    Inventor: James E. Amburgey
  • Publication number: 20200199587
    Abstract: The description provides a molecular switch comprising at least two nanoparticles, wherein a first nanoparticle comprises DNA and/or RNA oligonucleotides, and a second nanoparticle which is complementary to the first nanoparticle comprises reverse complementary DNA and/or RNA oligonucleotides of the first nanoparticle; wherein the complementary nanoparticles interact under physiological conditions leading to thermodynamically driven conformational changes in the first and second nanoparticles leading to their re-association to release one or more duplexes comprising said DNA and/or RNA oligonucleotides and the reverse complementary DNA and/or RNA oligonucleotides, and wherein the nanoparticles are not rings and have no single stranded toeholds.
    Type: Application
    Filed: April 3, 2018
    Publication date: June 25, 2020
    Applicants: The United States of America,as represented by the Secretary,Department of Health and Human Services, The University of North Carolina at Charlotte
    Inventors: Bruce Allen Shapiro, Kirill Andreevich Afonin, Eckart H.U. Bindewald, Mathias D. Viard, Wojciech Kasprzak, Marina A. Dobrovolskaia, Justin R. Halman
  • Patent number: 10662454
    Abstract: In one aspect, methods of treating lignocellulosic materials are described herein. In some embodiments, a method of treating a lignocellulosic material comprises degrading lignin of the lignocellulosic material with at least one fungus and hydrolyzing cellulose of the lignocellulosic material with at least one microorganism.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: May 26, 2020
    Assignee: University of North Carolina at Charlotte
    Inventors: Richard Giles, Matthew Parrow
  • Patent number: 10612995
    Abstract: Electronic nondestructive inspection tools for timber distribution poles are provided herein. An electronic nondestructive inspection tool includes a vibration sensor configured to perform a vibration measurement of a timber distribution pole. In some embodiments, the electronic nondestructive inspection tool includes a processor configured to perform operations including estimating decay of the timber distribution pole, using the vibration measurement and a physics model of the timber distribution pole; and outputting an indication of the decay of the timber distribution pole. Related methods are also provided.
    Type: Grant
    Filed: July 12, 2018
    Date of Patent: April 7, 2020
    Assignees: Duke Energy Corporation, The University of North Carolina at Charlotte
    Inventors: Matthew Whelan, Jerry Ivey, Steven Mitchell Dulin
  • Patent number: 10611627
    Abstract: In one aspect, single-sided microfluidic devices are described herein. In some embodiments, a single-sided microfluidic device comprises a substrate, a photoconductive layer positioned over the substrate, electrical contacts in electrical communication with the photoconductive layer, and a dielectric assembly positioned over the photoconductive layer. The dielectric assembly comprises a hydrophobic surface for receiving a liquid. In some embodiments, the dielectric assembly has an effective capacitance of about 10 ?F/m2 to about 10,000 ?F/m2 and/or an average thickness between about 20 nm and about 2000 nm.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: April 7, 2020
    Assignee: University of North Carolina at Charlotte
    Inventors: Srinivas Akella, Vasanthsekar Shekar
  • Patent number: 10585238
    Abstract: A photodetector focal plane array system having enhanced sensitivity and angle-of-view, including: a substrate including a plurality of photosensitive regions; and a microcomponent disposed adjacent to each of the plurality of photosensitive regions operable for receiving incident radiation from a relatively wider area and directing the incident radiation into a relatively smaller area of the associated photosensitive region by, in part, one or more of waveguiding and scattering; wherein each of the microcomponents is centered with respect to a photodetector mesa of each of the plurality of photosensitive regions. Each of the microcomponents includes one of a microcone, a microcuboid, a micropillar, a core-shell micropillar, a microtubule, a pyramid, an inverted pyramid, and an arbitrary shape microcomponent—with a top surface having a a selected or arbitrary cross-sectional shape and a selected or arbitrary profile.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: March 10, 2020
    Assignee: The University of North Carolina at Charlotte
    Inventors: Vasily N. Astratov, Aaron Brettin, Nicholaos I. Limberopoulos, Augustine Urbas
  • Patent number: 10574216
    Abstract: Method and apparatus to produce a step function with a designed transition (rise and/or fall) time on the order of <10 ns that reaches steady state by implementing a system that sums a number of currents at different rise times (frequencies) to generate the step function. The system also includes a passive output filter, composed of low resistance, inductance and very low capacitance to mitigate overshoot and high frequency noise.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: February 25, 2020
    Assignee: The University of North Carolina at Charlotte
    Inventor: Elisa Nicole Hurwitz
  • Patent number: 10562146
    Abstract: A finishing tool for modifying a surface of a part, including: a base, wherein the base is one or more of rotated and translated; and one or more fibers coupled to the base; wherein a base portion of each of the one or more fibers is disposed at a first angle relative to a major axis of the base, wherein the first angle is equal to or between ?90 degrees and 90 degrees; and wherein, in operation, an end portion of each of the one or more fibers is disposed at a second angle relative to the major axis of the base, wherein the second angle is approximately ?90 degrees or 90 degrees, substantially parallel to the surface of the part. In operation, the base portion and the end portion of each of the one or more fibers is coupled by a continuously curved intermediate portion.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: February 18, 2020
    Assignee: The University Of North Carolina At Charlotte
    Inventors: Brigid Ann Mullany, Hossein Shahinian
  • Patent number: 10549121
    Abstract: Systems and methods for efficient and automatic determination of radiation beam configurations for patient-specific radiation therapy planning are disclosed. According to an aspect, a method includes receiving data based on patient information and geometric characterization of one or more organs at risk proximate to a target volume of a patient. The method includes determining automatically one or more radiation treatment beam configuration sets. Further, the method includes presenting the determined one or more radiation beam configuration sets via a user interface.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: February 4, 2020
    Assignees: Duke University, The University of North Carolina at Charlotte
    Inventors: Qingrong Jackie Wu, Yaorong Ge, Fang-Fang Yin, Lulin Yuan
  • Patent number: 10554048
    Abstract: An energy storage system controller, including: an energy storage system coupled to a power distribution system; and a processor in communication with the energy storage system, wherein the processor executes: a renewables capacity firming algorithm operable for conditioning intermittent power of a renewable energy station using real time and historical input data such that it is made more stable and non-intermittent, optionally utilizing one or more parameter values associated with comparable time periods taking into account one or more factors comprising cloud state; and a peak load shaving algorithm operable for ensuring that the energy storage system is capable of transmitting full power capacity at a predicted feeder peak load time determined by the processor from real time and historical input data; wherein the performance of the renewables capacity firming algorithm and the performance of the peak load shaving algorithm are optimized in parallel.
    Type: Grant
    Filed: December 6, 2016
    Date of Patent: February 4, 2020
    Assignees: UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE, DUKE ENERGY CORPORATION
    Inventors: Sherif Abdelmageed Abdelrazek, Sukumar Kamalasadan, Johan H. R. Enslin, Daniel Blair Sowder
  • Publication number: 20200008795
    Abstract: A system may include a laser configured to output laser light with a wavelength between 600-780 nm, and a radiation delivery device. The radiation delivery device may be configured to output the laser light to a mesh or suture implant so that the mesh or suture implant is exposed to the laser light. The mesh or suture implant is attached to a patient and surrounded at least partially by tissue of the patient. The mesh or suture implant is vaporized by exposure to the laser light while tissue exposed to the laser light is not damaged by the laser light.
    Type: Application
    Filed: September 18, 2019
    Publication date: January 9, 2020
    Applicant: THE UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE
    Inventor: Nathaniel M. FRIED
  • Patent number: 10522703
    Abstract: A photovoltaic cell includes a junction, formed from an n-type semiconductor material and a p-type semiconductor material, a trench, opening toward the light-incident side of the junction, for trapping reflected light, and two photon conversion layers. A first photon conversion layer, arranged at the light-incident side of the junction, converts photons from a higher energy to a lower energy suitable for absorption by the semiconductor material, and a second photon conversion layer, arranged at the opposite side of the junction, converts photons from a lower energy to a higher energy suitable for absorption by the semiconductor material.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: December 31, 2019
    Assignee: The University of North Carolina at Charlotte
    Inventors: Mohamad-Ali Hasan, Michael A. Fiddy, Terence A. Goveas
  • Patent number: 10490762
    Abstract: In one aspect, light emitting devices are described herein. In some embodiments, a light emitting device described herein comprises an inorganic semiconductor substrate and a layer of quantum dots (QDs) covalently bonded to the inorganic semiconductor substrate. Such a device may further comprise an electrode and an overlayer positioned between the electrode and the layer of QDs. Moreover, the overlayer can be immediately adjacent to and in contact with the layer of QDs. Further, in some cases, the layer of QDs is a close-packed layer of QDs. Additionally, the light emitting device can be a green-emitting light emitting diode (LED) or an amber-emitting LED.
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: November 26, 2019
    Assignee: University of North Carolina at Charlotte
    Inventors: Michael G. Walter, Marcus Jones, Edward Stokes
  • Patent number: 10463361
    Abstract: A system may include a laser configured to output laser light with a wavelength between 600-780 nm, and a radiation delivery device. The radiation delivery device may be configured to output the laser light to a mesh or suture implant so that the mesh or suture implant is exposed to the laser light. The mesh or suture implant is attached to a patient and surrounded at least partially by tissue of the patient. The mesh or suture implant is vaporized by exposure to the laser light while tissue exposed to the laser light is not damaged by the laser light.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: November 5, 2019
    Assignee: THE UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE
    Inventor: Nathaniel M. Fried
  • Patent number: 10439513
    Abstract: Various examples are directed to a converter system comprising first and second series-connected converter modules and a synchronization circuit. The synchronization circuit may modulate a reference signal onto a carrier signal to generate a synchronization current signal and the synchronization current signal to an output current of the converter system to generate an aggregated output current. A first converter module may receive the aggregated output current from a first current sensor and generate a first reproduced synchronization signal at least in part from the aggregated output current. A first switch control signal for switching at least one switch at the first converter may be generated based at least in part on the first reproduced synchronization signal.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: October 8, 2019
    Assignees: SINEWATTS, INC., THE UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE
    Inventors: Robert Williams Cox, Daniel Wade Evans
  • Patent number: 10386620
    Abstract: The present invention provides super-resolution optical imaging methods and systems, including: providing a sample to be optically imaged; providing a plurality of microstructures disposed substantially adjacent to a surface of the sample to be optically imaged; and providing a material disposed about the plurality of microstructures; wherein the plurality of microstructures have a first index of refraction; and wherein the material disposed about the plurality of microstructures has a second index of refraction that is substantially less than the first index of refraction of the plurality of microstructures. The plurality of microstructures include one of a plurality of microspheres and a plurality of microcylinders.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: August 20, 2019
    Assignee: University of North Carolina at Charlotte
    Inventors: Vasily N. Astratov, Arash Darafsheh
  • Patent number: 10374037
    Abstract: A semiconductor junction may include a first semiconductor material and a second material. The first and the second semiconductor materials are extrinsically undoped. At least a portion of a valence band of the second material has a higher energy level than at least a portion of the conduction band of the first semiconductor material (type-III band alignment). A flow of a majority of free carriers across the semiconductor junction is diffusive. A region of generation and/or recombination of a plurality of free carriers is confined to a two-dimensional surface of the second material, and at the interface of the first semiconductor material and the second material.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: August 6, 2019
    Assignee: THE UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE
    Inventors: Raphael Tsu, Ian T. Ferguson, Nikolaus Dietz
  • Patent number: 10348180
    Abstract: Various examples are directed to electrical converters and systems for operating the same. An electrical converter may comprise a first converter module configured to receive a first direct current (DC) input and provide a first output. The first converter module may comprise a first switch modulated according to a first switch control signal. A second converter module may be configured to receive a second DC input and provide a second output. The second converter module may be connected in series with the first converter module. The second converter module may comprise a second switch modulated according to a second switch control signal. A phase of the first switch control signal may be offset from a phase of the second switch control signal by a first phase offset.
    Type: Grant
    Filed: November 17, 2015
    Date of Patent: July 9, 2019
    Assignees: SINEWATTS, INC., THE UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE
    Inventors: Shibashis Bhowmik, Babak Parkhideh