Patents Assigned to Vysis, Inc.
  • Patent number: 6277569
    Abstract: Direct label probe compositions which stain DNA of a preselected single chromosome or region of a chromosome of a multi-chromosomal genome are provided that comprise mixed DNA segments which are covalently bound to fluorophore groups through linking groups. The mixed DNA segments are derived from the DNA present in the preselected chromosome or chromosome region. These probe compositions can be used concurrently or sequentially with other probe compositions.
    Type: Grant
    Filed: July 6, 1998
    Date of Patent: August 21, 2001
    Assignee: Vysis, Inc.
    Inventors: Michael L. Bittner, Larry E. Morrison, Mona S. Legator
  • Patent number: 6274871
    Abstract: A method and system performs Fourier transform infrared (FT-IR) imaging microspectroscopy on a biological sample fixed on a substrate with a supporting surface that generally reflects infrared light while generally transmitting visible light. Infrared light impinging on the biological sample is reflected by the supporting surface of the substrate. Infrared light from the sample is focused onto a focal-plane array detector with multiple pixels for detecting infrared images of the sample. The detected infrared images are processed to generate spectral images of the sample. The same biological sample is suitable for conventional pathological studies.
    Type: Grant
    Filed: October 22, 1998
    Date of Patent: August 14, 2001
    Assignees: VYSIS, Inc., The Procter and Gamble Company
    Inventors: Rina K. Dukor, Curtis A. Marcott
  • Patent number: 6268128
    Abstract: The invention is a method of detecting nucleic acids in a sample using oligonucleotide probes which are noncovalently bound to solid supports for rapid, sensitive, hybridization assays. The method involves coating the support surface with a polynucleotide and then hybridizing a specific capture probe for each analyte to the polynucleotide by way of a short tail of the complementary polynucleotide. The immobilized probes are used to capture nucleic acid targets out of complex specimens for nonisotopic detection without the need for prior cell culture or purification of the target nucleic acids. A panel of tests can be run on each specimen simultaneously, a format that conserves precious samples. The assay can be readily automated, and can be conveniently run in a manual fashion on large numbers of samples in two to three hours.
    Type: Grant
    Filed: June 22, 1992
    Date of Patent: July 31, 2001
    Assignee: Vysis, Inc.
    Inventors: Mark L. Collins, David V. Morrissey
  • Patent number: 6251601
    Abstract: The invention comprises a multi-color, comparative hybridization assay method using an array of nucleic acid target elements attached to a solid support for the simultaneous detection of both gene expression and chromosomal abnormalities in a tissue sample. The method of the invention employs a comparative hybridization of a tissue mRNA or cDNA sample labeled in a first fluorescent color, a tissue chromosomal DNA sample labeled in a second fluorescent color, and at least one reference nucleic acid labeled in a third fluorescent color, to the array. The fluorescent color presence and intensity at each of at least two target elements are detected and the fluorescent ratios (i) of the first and third colors and (ii) the second and third colors determined. Gene expression and chromosomal abnormalities are thus simultaneously detected.
    Type: Grant
    Filed: February 2, 1999
    Date of Patent: June 26, 2001
    Assignee: Vysis, Inc.
    Inventors: Yijia Bao, Diping Che, Wan-Liang Li, Uwe Richard Müller, Steven A. Seelig, Jufang Shi
  • Patent number: 6194563
    Abstract: The invention relates to a method for linking a detectable label to a nucleic acid by (1) providing a nucleic acid bound to a solid support, the nucleic acid having a cytidine base; (2) transaminating the cytidine base with a reactive group to form a covalent linkage between the cytidine base and the reactive group; and (3) linking a detectable label to the reactive group. The invention also includes compositions containing a labeled nucleic acid produced by the methods of the invention immobilized on a solid support, and a kit containing a solid support, a bisulfite, a reactive group, and a detectable label.
    Type: Grant
    Filed: March 26, 1999
    Date of Patent: February 27, 2001
    Assignee: Vysis, Inc.
    Inventor: Kenneth A. Cruickshank
  • Patent number: 6165714
    Abstract: The invention provides devices and methods for use in detecting nucleic acid analytes in samples. The devices each include a solid support to which is bound a two-dimensional distribution or field of nucleic acid probes that each bind to a nucleic acid analyte, which is detected by use of amplification methods.
    Type: Grant
    Filed: December 16, 1997
    Date of Patent: December 26, 2000
    Assignee: Vysis, Inc.
    Inventors: David J. Lane, Michael P. Farrell
  • Patent number: 6140653
    Abstract: A large-field fluorescence imaging apparatus couples an excitation beam produced by a high-power white light source to a sample with reflective optics to achieve high illumination intensity on the sample. The reflective optics includes a concave mirror which projects the filtered and collimated excitation beam from the white light source onto the sample surface. The concave mirror images a field stop onto the sample surface to define an illumination area which matches the field of view of the imaging optics. The fluorescent light generated in the sample is filtered and imaged on a charge coupled device. The combination of the high illumination intensity and the imaging efficiency allows the imaging apparatus to acquire fluorescent images at an improved rate. A sample-height alignment arrangement using fixed alignment stops allows the sample to be positioned quickly and repeatably in the focal plane of the imaging optics without the need for fine adjustments.
    Type: Grant
    Filed: March 27, 1998
    Date of Patent: October 31, 2000
    Assignee: Vysis, Inc.
    Inventor: Diping Che
  • Patent number: 5945674
    Abstract: A method of detecting cellular types in a biological sample supported on an infrared absorptive substrate, such as a plain glass slide, analyzes infrared light reflected from the sample using an Attenuated Total Reflection (ATR) technique. An infrared beam is directed to the sample through an ATR microscope objective. The depth of penetration of the infrared beam in the sample is controlled to avoid infrared spectral response from the absorptive substrate. The attenuated total reflection from the sample is detected and analyzed to determine the cellular types or the presence of anomalies in the sample. The method allows infrared measurements on cell samples mounted on plain glass slides, as are normally used by pathologists and other medical investigators.
    Type: Grant
    Filed: July 30, 1997
    Date of Patent: August 31, 1999
    Assignee: Vysis, Inc.
    Inventor: Rina K. Dukor
  • Patent number: 5837466
    Abstract: The invention provides devices and methods for use in detecting nucleic acid analytes in samples. The devices each include a solid support to which is bound a two-dimensional distribution or field of nucleic acid probes that each bind to a nucleic acid analyte, which is detected by use of amplification methods.
    Type: Grant
    Filed: December 16, 1996
    Date of Patent: November 17, 1998
    Assignee: Vysis, Inc.
    Inventors: David J. Lane, Michael P. Farrell
  • Patent number: 5824478
    Abstract: The invention features methods for detecting a target analyte in a sample. In these methods, a sample is contacted with a detector probe and a capture probe to form a detector probe-analyte-capture probe complex. The detector probe includes a new moiety, having a predetermined pI and containing a detectable label. The complex is isolated from detector probe that is not bound in the complex, the moiety is released from the complex, and the released moiety is concentrated, e.g., by isoelectric focusing or other methods. Detection of the moiety, e.g., at a position in a pH gradient corresponding to its pI, can be used as a measure of the presence and concentration of the analyte in the sample.
    Type: Grant
    Filed: April 30, 1996
    Date of Patent: October 20, 1998
    Assignee: Vysis, Inc.
    Inventor: Uwe Richard Muller
  • Patent number: 5804384
    Abstract: The invention features devices that each consist of a tube containing a linear array of specific binding elements that each have capture probes specific for a target analyte linked thereto. The devices of the invention can be used in methods for detecting target analytes in samples.
    Type: Grant
    Filed: December 6, 1996
    Date of Patent: September 8, 1998
    Assignee: Vysis, Inc.
    Inventors: Uwe Richard Muller, David J. Lane
  • Patent number: 5776688
    Abstract: Direct label probe compositions which stain DNA of a preselected single chromosome or region of a chromosome of a multi-chromosomal genome are provided that comprise mixed DNA segments which are covalently bound to fluorophore groups through linking groups. The mixed DNA segments are derived from the DNA present in the preselected chromosome or chromosome region. These probe compositions can be used concurrently or sequentially with other probe compositions.
    Type: Grant
    Filed: January 10, 1997
    Date of Patent: July 7, 1998
    Assignee: Vysis, Inc.
    Inventors: Michael L. Bittner, Larry E. Morrison, Mona S. Legator
  • Patent number: 5663319
    Abstract: Direct label probe compositions which stain DNA of a preselected single chromosome or region of a chromosome of a multi-chromosomal genome are provided that comprise mixed DNA segments which are covalently bound to fluorophore groups through linking groups. The mixed DNA segments are derived from the DNA present in the preselected chromosome or chromosome region. These probe compositions can be used concurrently or sequentially with other probe compositions.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: September 2, 1997
    Assignee: Vysis, Inc.
    Inventors: Michael L. Bittner, Larry E. Morrison, Mona S. Legator
  • Patent number: 5512433
    Abstract: This invention discloses methods and compounds for covalently linking xanthine or lower alkyl substituted derivatives of xanthine to DNA and the resulting xanthine or lower alkyl substituted xanthine derivative labeled DNA reagents. Reagents for the in situ detection of a chromosome or a region of a chromosome are disclosed. These reagents include a multiplicity of DNA sequences that are complementary to different portions of the chromosome or chromosome region to be detected. Multiple xanthine or lower alkyl substituted xanthine derivative labels are covalently linked to the DNA sequences. These xanthine or lower alkyl substituted xanthine derivative labeled reagents are contacted under hybridizing conditions with the chromosome or chromosome region of interest. Any binding of the reagent with the chromosome or chromosome region of interest may then be detected by immunological techniques.
    Type: Grant
    Filed: November 8, 1990
    Date of Patent: April 30, 1996
    Assignee: Vysis, Inc.
    Inventors: Kenneth A. Cruickshank, Douglas J. Taron