Patents Assigned to William March Rice University
  • Patent number: 9718045
    Abstract: Composite materials and methods of preparing C02 capture include: (1) a porous solid support comprising a plurality of porous channels; and (2) a nucleophilic source associated with the porous channels of the porous solid support. The nucleophilic source is capable of converting the captured C02 to poly(C02). Methods of capturing C02 from an environment include associating the environment with the aforementioned composite materials to lead to the capture of C02 from the environment. Such methods may also include a step of releasing the captured C02 from the composite material. The associating step comprises a conversion of the captured C02 to poly(C02) in the composite material. A releasing step may also include a depolymerization of the formed poly(C02).
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: August 1, 2017
    Assignee: WILLIAM MARCH RICE UNIVERSITY
    Inventors: James M. Tour, Chih-Chau Hwang
  • Patent number: 9312540
    Abstract: A fabrication process for conformal coating of a thin polymer electrolyte layer on nanostructured electrode materials for three-dimensional micro/nanobattery applications, compositions thereof, and devices incorporating such compositions. In embodiments, conformal coatings (such as uniform thickness of around 20-30 nanometer) of polymer Polymethylmethacralate (PMMA) electrolyte layers around individual Ni—Sn nanowires were used as anodes for Li ion battery. This configuration showed high discharge capacity and excellent capacity retention even at high rates over extended cycling, allowing for scalable increase in areal capacity with electrode thickness. Such conformal nanoscale anode-electrolyte architectures were shown to be efficient Li-ion battery system.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: April 12, 2016
    Assignee: WILLIAM MARCH RICE UNIVERSITY
    Inventors: Pulickel M. Ajayan, Fung Suong Ou, Manikoth M. Shajiumon, Sanketh R. Gowda, Arava L. M. Reddy
  • Publication number: 20120178181
    Abstract: A device and method for detecting the hybridization of an unmodified target deoxyribonucleic acid (DNA) molecule including exposing a Raman substrate to the unmodified target DNA molecule, where the unmodified target DNA molecule is a complementary DNA molecule to a thiol-terminated probe DNA molecule covalently linked to the Raman substrate. Also, the thiol-terminated probe DNA molecule includes an adenine analog substituted for adenine. The hybridization of the unmodified target DNA molecule to the thiol-terminated probe DNA molecule is detected by measuring a Raman spectroscopic response of the Raman substrate.
    Type: Application
    Filed: August 16, 2010
    Publication date: July 12, 2012
    Applicant: William March Rice University
    Inventors: Aoune Barhoumi, Dongmao Zhang, Nancy J. Halas
  • Publication number: 20120034162
    Abstract: A composition and method is described for intracellular delivery of fullerene containing peptides. The composition and method involve fullerene-substituted phenylalanine as part of a peptide based delivery system. The presence of a fullerene-substituted amino acid in a peptide is found to alter the intracellular transport properties of the peptide.
    Type: Application
    Filed: March 30, 2007
    Publication date: February 9, 2012
    Applicant: William March Rice University
    Inventors: Andrew R. Barron, Jianzhong Yang, Jianhua Yang, Kuan Wang, Jonathan Driver
  • Publication number: 20110110843
    Abstract: Articles comprising neat, aligned carbon nanotubes and methods for production thereof are disclosed. The articles and methods comprise extrusion of a super acid solution of carbon nanotubes followed by removal of the super acid solvent. The articles may be processed by wet-jet wet spinning, dry-jet wet spinning, and coagulant co-flow extrusion techniques.
    Type: Application
    Filed: October 29, 2008
    Publication date: May 12, 2011
    Applicant: WILLIAM MARCH RICE UNIVERSITY
    Inventors: Matteo Pasquali, Wen-Fang Hwang, Howard K. Schmidt, Natneal Behabtu, Virginia Davis, A. Nicholas G. Parra-Vasquez, Micah J. Green, Richard Booker, Colin c. Young, Hua Fan
  • Publication number: 20030163593
    Abstract: A system and method for dynamic bandwidth allocation is provided. The method provides one or more nodes to compute a simple lower bound of temporally and spatially aggregated virtual time using per-ingress counters of packet (byte) arrivals. Thus, when information is propagated along the ring, each node can remotely approximate the ideal fair rate for its own traffic at each downstream link. In this way, flows on the ring rapidly converge to their ring-wide fair rates while maximizing spatial reuse.
    Type: Application
    Filed: February 25, 2003
    Publication date: August 28, 2003
    Applicant: William March Rice University
    Inventor: Edward Knightly