Patents Assigned to Xintec Corporation
  • Patent number: 10555771
    Abstract: The present invention relates generally to surgical lasers and more specifically to a laser beam control and delivery system that accurately and efficiently directs a laser beam into an optical fiber. The laser beam control and delivery system also provides additional functions, including a connection for a fiber tip temperature control system and a tissue temperature sensing system. The present invention also relates to a surgical laser system that has a high efficiency thermoelectric cooling system.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: February 11, 2020
    Assignee: Xintec Corporation aba Convergent Laser Technology
    Inventors: John L. Rink, Anh Hoang
  • Patent number: 10285758
    Abstract: Apparatus and methods are described for laser ablation of tissue. The apparatus and methods utilize a laser source coupled to a fiberoptic laser delivery device and a laser driver and control system with features for protection of the laser delivery device, the patient, the operator and other components of the laser treatment system. Advantageously, the laser source may utilize laser diodes operating at approximately 975 nm, 1470 nm, 1535 nm or 1870 nm wavelengths with a laser power output of at least 60 watts, preferably greater than 80 watts and most preferably 120-150 watts or higher. The invention, which has broad medical and industrial applications, is described in relation to a method for treatment of benign prostatic hyperplasia (BPH) by contact laser ablation of the prostate (C-LAP).
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: May 14, 2019
    Assignee: Xintec Corporation
    Inventors: John L. Rink, Marilyn M. Chou, Mark H. K. Chim
  • Publication number: 20170354465
    Abstract: The present invention relates generally to surgical lasers and more specifically to a laser beam control and delivery system that accurately and efficiently directs a laser beam into an optical fiber. The laser beam control and delivery system also provides additional functions, including a connection for a fiber tip temperature control system and a tissue temperature sensing system. The present invention also relates to a surgical laser system that has a high efficiency thermoelectric cooling system.
    Type: Application
    Filed: May 16, 2011
    Publication date: December 14, 2017
    Applicant: Xintec Corporation aba Convergent Laser Technolgies
    Inventors: John L. Rink, Anh Hoang
  • Patent number: 9216059
    Abstract: Apparatus and methods are described for laser ablation of tissue. The apparatus and methods utilize a laser source coupled to a fiberoptic laser delivery device and a laser driver and control system with features for protection of the laser delivery device, the patient, the operator and other components of the laser treatment system. Advantageously, the laser source may utilize laser diodes operating at approximately 975 nm, 1470 nm, 1535 nm or 1870 nm wavelengths with a laser power output of at least 60 watts, preferably greater than 80 watts and most preferably 120-150 watts or higher. The invention, which has broad medical and industrial applications, is described in relation to a method for treatment of benign prostatic hyperplasia (BPH) by contact laser ablation of the prostate (C-LAP).
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: December 22, 2015
    Assignee: Xintec Corporation
    Inventors: John L. Rink, Marilyn M. Chou, Mark H. K. Chim
  • Patent number: 5860972
    Abstract: The present invention relates generally to methods and devices for detecting, destroying and removing urinary calculi and other similar structures anywhere within an animal body, and more specifically to a method for locating such structures, fragmenting and vaporizing them and related detection and control schemes.
    Type: Grant
    Filed: October 26, 1995
    Date of Patent: January 19, 1999
    Assignee: Xintec Corporation
    Inventor: Anh N. Hoang
  • Patent number: 5689520
    Abstract: Variable waveform output in surgical laser is achieved by controlling power into a solid-state laser cavity. A control circuit is used to coordinate pulse energy, pulse frequency, and pulsewidth into a solid-state laser cavity to achieve a user desired waveform output. An Insulated Gate Bipolar Transistor (IGBT) or similar solid-state transistor switching device under the direction of a control circuit is used to switch energy into the solid-state laser cavity thereby modulating the pulse frequency and pulsewidth. The pulse energy is varied by varying the charge across the capacitor bank which sends energy through the IGBT to the solid-state laser cavity. By having the ability to vary the laser's output pulse frequency, pulsewidth, and pulse energy, multiple tissue effects can be achieved using one solid-state laser cavity.
    Type: Grant
    Filed: October 31, 1995
    Date of Patent: November 18, 1997
    Assignee: Xintec Corporation
    Inventor: Anh N. Hoang
  • Patent number: 5570445
    Abstract: A reusable connector adapter for coupling any fiber optic transmittable laser source to a fiber optic laser delivery device, the laser source having a laser energy output port. The adapter allows the use of a variety of different laser sources with a variety of different fiber optic laser delivery devices. The adapter maintains the fiber optic laser delivery device adjacent to the laser energy output port such that the laser energy to be transmitted is communicated efficiently to the fiber optic laser delivery device. The adapter further comprises a laser interlock deactivation means such that if a laser source has a mechanical, electrical or optical interlock system, the adapter will function to deactivate the interlock system. Furthermore, the adapter also comprises a plurality of optical barriers to prevent the unintended transmission of laser energy when, for example, the fiber optic laser delivery device has not been installed or has not been installed properly.
    Type: Grant
    Filed: June 29, 1995
    Date of Patent: October 29, 1996
    Assignee: Xintec Corporation
    Inventors: Marilyn M. Chou, King J. J. Yu, Ken T. Yu
  • Patent number: 5498260
    Abstract: The present invention relates generally to a family of fiber optic laser delivery devices for use in medical and other applications, and more particularly, to such an apparatus wherein the transmitted radiation is delivered through and at various angles to the central axis of a fiber optic waveguide by an internally reflective surface. The invention is capable of coagulating, cutting or vaporizing tissue and may be useful in a wide range of surgical and non-surgical applications. A novel method for coagulating and then vaporizing or otherwise removing the coagulated tissue is also disclosed.
    Type: Grant
    Filed: May 26, 1993
    Date of Patent: March 12, 1996
    Assignee: Xintec Corporation
    Inventors: John L. Rink, Marilyn M. Chou
  • Patent number: 5486171
    Abstract: The present invention relates generally to a family of fiber optic laser beam angle delivery devices for use in medical procedures such as a laser assisted transurethral resection of the prostate (TURP) and other applications, and more particularly, to such devices wherein the transmitted radiation is delivered through and at various angles to the central axis of an optical fiber by refraction or reflection off of a reflective insert or other reflective layer placed adjacent to and in intimate contact with the tip of the optical fiber, the tip assembly being encased by a quartz or other transparent material cap, the transparent cap being held secusely in place by an attachment means.
    Type: Grant
    Filed: October 7, 1994
    Date of Patent: January 23, 1996
    Assignee: Xintec Corporation
    Inventor: Marilyn M. Chou
  • Patent number: 5452391
    Abstract: A reusable connector adapter for coupling a fiber optic laser delivery device with a laser source having a laser energy output port. The adapter allows the use of a variety of different laser sources with a variety of different fiber optic laser delivery devices. The adapter maintains the fiber optic laser delivery device adjacent to the laser energy output port such that the laser energy to be transmitted is communicated efficiently to the fiber optic laser delivery device. The adapter further comprises a laser interlock deactivation means such that if a laser source has a mechanical, electrical or optical interlock system, the adapter will function to deactivate the interlock system. Furthermore, the adapter also comprises an optical barrier to prevent the unintended transmission of laser energy when, for example, the fiber optic laser delivery device has not been installed or has not been installed properly.
    Type: Grant
    Filed: June 22, 1994
    Date of Patent: September 19, 1995
    Assignee: Xintec Corporation
    Inventors: Marilyn M. Chou, Kwok H. Ngai, King J. J. Yu, Ken T. Yu
  • Patent number: 5366456
    Abstract: The present invention relates generally to a laser cutting scalpel for use in medical and other applications, and more particularly, to such an apparatus wherein the transmitted radiation is delivered at an angle to the incident radiation source and tool. The invention is capable of coagulating, cutting or vaporizing tissue and may be useful in a wide range of surgical and non-surgical applications. The device has a firing tip which has an insert with a highly polished mirrored surface lying at a specific angle with respect to the central longitudinal axis of the optical fiber. Thus impinging laser radiation is reflected to the side and delivered at approximately a right angle to the fiber. The invention also features one or more cooling vents located in the firing tip itself resulting in a device less prone to failure during operation. The device can be positioned accurately with respect to depth of insertion of the fiber.
    Type: Grant
    Filed: February 8, 1993
    Date of Patent: November 22, 1994
    Assignee: Xintec Corporation
    Inventors: John L. Rink, Kwok H. Ngai, King J. J. Yu, Herrick Tam
  • Patent number: 5354294
    Abstract: The present invention relates generally to a family of fiber optic laser beam angle delivery devices for use in medical and other applications, and more particularly, to such an apparatus wherein the transmitted radiation is delivered through and at various angles to the central axis of an optical fiber by reflection off of a combination of surfaces.
    Type: Grant
    Filed: July 7, 1993
    Date of Patent: October 11, 1994
    Assignee: Xintec Corporation
    Inventor: Marilyn M. Chou
  • Patent number: 5092865
    Abstract: A control apparatus for a pumped rod-type laser includes an arc lamp disposed to illuminate the lasing medium, such as a NdYAG crystalline rod. The apparatus includes a full wave rectifier to power the arc lamp, and a MOSFET switching circuit to turn on and off the arc lamp power at controlled times during each half cycle of the power waveform so that the laser medium is pumped and optically discharged once during each half cycle of the power supply. The laser power output is measured by a photodetector during each half cycle, and the photodetector output is integrated and compared with a manually set, variable laser output power level. When the actual laser power reaches the preset power level, the comparator initiates turning off the MOSFET switching circuit power for that respective half cycle of the power waveform.
    Type: Grant
    Filed: August 20, 1990
    Date of Patent: March 3, 1992
    Assignee: Xintec Corporation
    Inventor: John L. Rink
  • Patent number: 5074637
    Abstract: An improved bayonet optical connector includes, in one aspect, a connector having a nut provided with at least one bayonet slot. The bayonet slot includes a detent portion to retain a bayonet pin of a mating connector, and a camming edge extends obliquely from the detent portion distally toward the mating connector. The camming edge(s) extend about a substantial portion of the nut, so that manually pushing the two connector components together causes impingement of the bayonet pin(s) on the camming edge(s), and urges the bayonet nut to rotate to bring the detent portion(s) into engagement with the pin(s). The invention also includes a nut cover secured about the bayonet nut to enhance grasping and manipulation of the bayonet nut. The bayonet nut is free of all portions of the connector except the bayonet nut, to that it acts to improve both the handling of the connector assembly and rotation and translation of the bayonet nut.
    Type: Grant
    Filed: June 4, 1990
    Date of Patent: December 24, 1991
    Assignee: Xintec Corporation
    Inventor: Dan L. Rink
  • Patent number: 5057099
    Abstract: A method for carrying out surgical procedures using a laser and a laser surgical tool includes the provision of a temperature control device associated with the laser which monitors the temperature of the surgical tool and delivery system and governs the laser power output to achieve a desired temperature level. The temperature control device may be used either to prevent heating of the surgical tool and delivery system beyond it structural tolerance, or to maintain a predetermined temperature level which is optimized for a particular surgical or medical procedure. The delivery system may comprise an optical fiber, and the surgical tool may comprise the output end of the optical fiber which is free of any additional surgical cutting implement.
    Type: Grant
    Filed: May 14, 1990
    Date of Patent: October 15, 1991
    Assignee: Xintec Corporation
    Inventor: John L. Rink
  • Patent number: 5029973
    Abstract: An improved bayonet connector assembly includes a connector nut having a generally cylindrical tubular configuration with a bore extending axially therethrough. In one embodiment the inner surface of the bore includes at least one camming surface extending both circumferentially and axially therein and disposed to impinge upon the corresponding bayonet pin of the mating bayonet connector. A detent window is formed at the inner end of each camming surface to engage and retain the bayonet pin that is driven slidably along the camming surface into the detent window. The end surfaces of the cylindrical nut are annular and continuous, so that the strength of the structure is maximized. Furthermore, the camming surfaces and the detent slots are arranged so that the entire nut may be formed in a single molding operation. In another embodiment, the camming surfaces and detent recesses are formed on the exterior of the female connector, and the bayonet pins extend radially inwardly in the bore of the bayonet nut.
    Type: Grant
    Filed: September 19, 1990
    Date of Patent: July 9, 1991
    Assignee: Xintec Corporation
    Inventor: Dan L. Rink
  • Patent number: 4994060
    Abstract: A laser heated cautery cap assembly includes a catheter assembly adapted to be introduced into a lumen, such as an arterial opening. The catheter assembly includes at least one optical fiber connected to a laser light source adapted to produce short output bursts. A cautery cap at the catheter distal end includes a transparent substrate member disposed to receive the laser energy from the optical fiber(s). The substrate member preferably is formed of a crystalline solid having a smooth, curved outer surface, with a central guidewire bore extending therethrough. One end of the bore is provided with a tapering counterbore, and the opposite end of the substrate member is an input surface disposed to receive laser energy from the optical fiber. A nose piece includes a central guidewire bore coaxial with the substrate member bore, the nose piece including a tapered proximal end dimensioned to fit within the counterbore of the substrate.
    Type: Grant
    Filed: March 20, 1989
    Date of Patent: February 19, 1991
    Assignee: Xintec Corporation
    Inventors: Dan L. Rink, John L. Rink, Garrett Lee
  • Patent number: 4950268
    Abstract: A control apparatus for a pumped rod-type laser includes an arc lamp disposed to illuminate the lasing medium, such as a NdYAG crystalline rod. The apparatus includes a full wave rectifier to power the arc lamp, and a MOSFET switching circuit to turn on and off the arc lamp power at controlled times during each half cycle of the power waveform so that the laser medium is pumped and optically discharged once during each half cycle of the power supply. The laser power output is measured by a photodetector during each half cycle, and the photodetector output is integrated and compared with a manually set, variable laser output power level. When the actual laser power reaches the preset power level, the comparator initiates turning off the MOSFET switching circuit power for that respective half cycle of the power waveform. The full wave rectified power supply also permits the use of 110 VAC utility power.
    Type: Grant
    Filed: November 1, 1988
    Date of Patent: August 21, 1990
    Assignee: Xintec Corporation
    Inventor: John L. Rink
  • Patent number: 4925265
    Abstract: An apparatus for selectively directing a laser beam into a plurality of optical fibers and for selectively shifting the laser beam among the fibers includes a connector member having a plurality of passages extending longitudinally therethrough, the passages being disposed in a nominal common plane. The input end of each optical fiber extends through a respective passage, with the axes of the input ends spaced closely together and oriented parallel to the axis of a laser beam directed toward the input ends. The laser beam passes through a positive lens having a focal plane coincident with the input ends of the optical fibers. An axially translatable shaft extends generally perpendicular to the nominal plane and to the beam axis, and is coupled to drive means to shift the axial position of the shaft selectively, rapidly, and reiteratively.
    Type: Grant
    Filed: April 11, 1988
    Date of Patent: May 15, 1990
    Assignee: Xintec Corporation
    Inventors: John L. Rink, Dan L. Rink, Garrett Lee
  • Patent number: 4848339
    Abstract: An improved laser heated intravascular cautery cap construction includes a generally cylindrical outersidewall, and a tappered, annular, distal end wall joining the two sidewalls and defining a closed annular space therebetween. A bore extending axially through the inner sidewall is dimentioned to receive in freely sliding fashion an arterial guidewire or other device such as a doppler flow sensor or an optical bundle for viewing. A unitary or multi-segment annular target element is received within the distal portion of the annular space, and is secured to the outer sidewall adjacent to the end wall with a gap defined between the target element and the inner sidewall. A plurality of holes extend through a connector member parallel to the axis of the sidewalls, each hole receiving therethrough one of a plurality of optical fibers extending through the arterial catheter to a laser light source.
    Type: Grant
    Filed: April 11, 1988
    Date of Patent: July 18, 1989
    Assignee: Xintec Corporation
    Inventors: Dan Rink, John Rink, Garrett Lee