Patents Examined by Alexander Polyansky
  • Patent number: 9169545
    Abstract: A material for use as a mechanical component is formed of a superelastic intermetallic material having a low apparent modulus and a high hardness. The superelastic intermetallic material is conditioned to be dimensionally stable, devoid of any shape memory effect and have a stable superelastic response without irrecoverable deformation while exhibiting strains of at least 3%. The method of conditioning the superelastic intermetallic material is described. Another embodiment relates to lightweight materials known as ordered intermetallics that perform well in sliding wear applications using conventional liquid lubricants and are therefore suitable for resilient, high performance mechanical components such as gears and bearings.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: October 27, 2015
    Assignee: The United States of America as Represented by the Administrator of National Aeronautics and Space Administration
    Inventors: Santo Padula, II, Ronald D. Noebe, Malcolm K. Stanford, Christopher DellaCorte
  • Patent number: 9169535
    Abstract: In a process and apparatus for the reduction of metal oxides to form metalized material by contact with hot reducing gas, which is produced at least partially by catalytic reformation of a mixture of—a gas containing carbon dioxide (CO2) and/or steam (H2O) with—gaseous hydrocarbons, the fuel gas for burners which provide the heat for the endothermal reformation processes which take place during the reformation is obtained at least partially from a partial quantity of the top gas produced during the reduction of metal oxides to form metalized material, wherein this partial quantity of the top gas, before it is used as a component of the fuel gas, is firstly subjected to dedusting and then to a CO conversion reaction, and the conversion gas obtained during the CO conversion reaction is subjected to CO2 removal after cooling.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: October 27, 2015
    Assignee: SIEMENS VAI METALS TECHNOLOGIES GMBH
    Inventors: Robert Millner, Guenter Peer
  • Patent number: 9169542
    Abstract: This invention aims to provide a recycled magnesium alloy having a good corrosion resistance and a process for producing the same. The process of the present invention comprises an adjusting step of adjusting composition of molten metal of a magnesium alloy so as to comprise, by mass: Al: 5 to 10%, Zn: not less than 1% and not less than three times of Cu content (%), Mn: 0.1 to 1.5% and the remainder: Mg and impurities with or without one or more reforming elements. While the upper limit of the Al content is restricted to a low level, the Zn content is increased in accordance with the Cu content. Therefore, the recycled magnesium alloy produced by this process can effectively suppress corrosion caused by Cu, which is one of corrosion-causing elements.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: October 27, 2015
    Assignees: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroyuki Kawabata, Naohisa Nishino, Sonoko Nishino, Yasushi Iwata, Yoshikazu Genma, Tsuyoshi Seguchi
  • Patent number: 9162285
    Abstract: A powder metal composition for high wear and temperature applications is made by atomizing a melted iron based alloy including 3.0 to 7.0 wt. % carbon; 10.0 to 25.0 wt. % chromium; 1.0 to 5.0 wt. % tungsten; 3.5 to 7.0 wt. % vanadium; 1.0 to 5.0 wt. % molybdenum; not greater than 0.5 wt. % oxygen; and at least 40.0 wt. % iron. The high carbon content reduces the solubility of oxygen in the melt and thus lowers the oxygen content to a level below which would cause the carbide-forming elements to oxidize during atomization. The powder metal composition includes metal carbides in an amount of at least 15 vol. %. The microhardness of the powder metal composition increases with increasing amounts of carbon and is typically about 800 to 1,500 Hv50.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 20, 2015
    Assignees: Federal-Mogul Corporation, La Corporation De L'Ecole Polytechnique De Montreal
    Inventors: Denis B. Christopherson, Jr., Leslie John Farthing, Todd Schoenwetter, Gilles L'Esperance, Philippe Beaulieu
  • Patent number: 9163302
    Abstract: The present invention relates to a castable heat resistant aluminum alloy for high temperature applications such as components in combustion engines, in particular for the manufacturing of highly loaded cylinder heads, the alloy comprises the following composition: .Si: 6.5-10 wt %.Mg: 0.25-0.35 wt %.Cu: 0.3-0.7 wt %.Hf: 0.025-0.55 wt % Optionally with the addition of: .Ti: 0-0.2 wt %.Zr: 0-0.3 wt %, the balance being made of Al and unavoidable impurities including Fe.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: October 20, 2015
    Assignees: NORSK HYDRO ASA, MONTUPET S.A.
    Inventors: Terje Iveland, Stig Brusethaug, Petter Åsholt, Bruno Barlas, Denis Massinon, Philippe Meyer
  • Patent number: 9145600
    Abstract: The present invention relates to a precipitation hardened heat-resistant steel containing, in terms of % by mass: 0.005 to 0.2% of C, not more than 2% of Si, 1.6 to 5% of Mn, 15% or more and less than 20% of Ni, 10 to 20% of Cr, more than 2% and up to 4% of Ti, 0.1 to 2% of Al, and 0.001 to 0.02% of B, with the balance being Fe and inevitable impurities, in which a ratio (Ni/Mn) of an amount of Ni to an amount of Mn is 3 to 10, a total amount of Ni and Mn (Ni+Mn) is 18% or more and less than 25%, and a ratio (Ti/Al) of an amount of Ti to an amount of Al is 2 to 20.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: September 29, 2015
    Assignee: DAIDO STEEL CO., LTD.
    Inventors: Kaoru Imaizumi, Naohide Kamiya
  • Patent number: 9138828
    Abstract: A method of production of a welded joint which enables improvement of the fatigue strength in the case where measures for improvement of the fatigue strength cannot be applied due to the presence of structurally sealed regions is provided. The method is provided with a first weld step which performs welding by forming an inside weld toe or root part by using a weld metal with a transformation start temperature of 175° C. to 400° C. in range, at least parts of the weld metal forming the inside weld toe or root part which was formed at the first weld step becoming unmelted parts, and a second weld step which performs welding for building up the weld metal by a single pass by a weld heat input by which all of the unmelted parts are retransformed to austenite so as to introduce compressive residual stress to the inside weld toe or root part.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: September 22, 2015
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Tadashi Kasuya, Ryuichi Shimura, Manabu Mizumoto
  • Patent number: 9139884
    Abstract: A process and an apparatus for producing liquid pig iron or liquid primary steel products from charge materials formed by iron ores and additions. The charge materials are subjected to a further reduction in a reducing zone (1) and are then fed to a smelting zone or a smelting unit (2), in particular a fusion gasifier, for smelting with the addition of carbon carriers and oxygen-containing gas to form a fixed bed. A CO- and H2-containing reduction gas is formed, which gas is introduced into the reducing zone converted there and drawn off as top gas. The hot top gas, laden with solid matter, after separation of the solids, is subjected at least to a dry coarse separation and at least parts of the hot solids segregated by the separation are returned into the smelting zone or the smelting unit (2) or the reducing unit (1). In addition, the top gas is treated in a further fine separation stage (13A).
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: September 22, 2015
    Assignee: PRIMETALS TECHNOLOGIES AUSTRIA GMBH
    Inventors: Georg Aichinger, Thomas Eder, Hado Heckmann, Robert Millner, Johannes Leopold Schenk, Martin Schmidt, Kurt Wieder, Johann Wurm
  • Patent number: 9133532
    Abstract: Provided is a method of manufacturing a high-carbon hot-rolled steel sheet, including the steps of i) preparing high-carbon steel materials comprising C: 0.7 to 0.9%, Si: 0.5% or less, Mn: 0.1 to 1.5%, Cr: 0.5% or less, P: 0.05% or less, and S: 0.03% or less in wt % and remaining Fe and other inevitable impurities; ii) heating the high-carbon steel materials again and manufacturing a steel sheet by performing hot rolling in an austenite region in which a finishing temperature for the hot rolling is an Ar3 transformation temperature or higher; iii) rapidly cooling the steel sheet at 520 to 620° C. before phase transformation is started in a Run-Out Table (ROT); iv) uniformly maintaining a cooling retention temperature so that the cooled steel sheet is subject to phase transformation in any one temperature between 520 to 620° C.; and v) winding the steel sheet in the cooling retention temperature. Also provided is the high-carbon steel sheet made by the above-described method.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: September 15, 2015
    Assignee: POSCO
    Inventors: Kyong-Su Park, Han-Chul Shin
  • Patent number: 9132464
    Abstract: A method for hot stamping an iron based component in which the component is heated to a temperature sufficient to transform the component into austenite. The heated component is then positioned in an open stamping die and the stamping die is closed to mechanically change the shape of the heated component to a desired end shape of the component. At least one opening is punched in the heated component and, thereafter, the component is quenched at a rate and to a temperature sufficient to transform the component into martensite.
    Type: Grant
    Filed: June 12, 2012
    Date of Patent: September 15, 2015
    Assignee: Martinrea Industries, Inc.
    Inventors: Arpad Takacs, Di Yang, Roger Bianchi
  • Patent number: 9133535
    Abstract: A copper alloy sheet according to one aspect contains 28.0 mass % to 35.0 mass % of Zn, 0.15 mass % to 0.75 mass % of Sn, 0.005 mass % to 0.05 mass % of P, and a balance consisting of Cu and unavoidable impurities, in which relationships of 44?[Zn]+20×[Sn]?37 and 32?[Zn]+9×([Sn]?0.25)1/2?37 are satisfied. The copper alloy sheet according to the aspect is manufactured by a manufacturing process including a finish cold-rolling process of cold-rolling a copper alloy material, an average grain size of the copper alloy material is 2.0 ?m to 7.0 ?m, and a sum of an area ratio of a ? phase and an area ratio of a ? phase in a metallographic structure of the copper alloy material is 0% to 0.9%.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: September 15, 2015
    Assignees: Mitsubishi Shindoh Co., Ltd., MITSUBISHI MATERIALS CORPORATION
    Inventors: Keiichiro Oishi, Takashi Hokazono, Michio Takasaki, Yosuke Nakasato
  • Patent number: 9133537
    Abstract: A method of improving a superalloy component is proposed. The method involves the introduction of at least one additive into the superalloy component, the at least one additive being selected from the group of Hf, La, and Y. The at least one additive is introduced into a surface layer of the component. Preferably, the surface layer has a depth of 0.5 mm or less. The component may include, for example, an airfoil of a gas turbine.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: September 15, 2015
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventor: Paul Mathew Walker
  • Patent number: 9120146
    Abstract: A free casting method according to the present invention includes, a lead-out step for leading out molten metal from a lead-out area provided in a source of supply, e.g. a surface level of the molten metal, to retain the molten metal temporarily by surface films generated on an outer surface, and a forming step for obtaining a formed body by solidifying retained molten metal led out along a set passage depending on a desired casting shape, wherein the retained molten metal is solidified after being formed into the desired casting shape by applying an external force thereto at positions between an unrestrained root portion of the retained molten metal in vicinity of the surface level of the molten metal and a solidification interface defined as a boundary between the retained molten metal and the formed body in the forming step.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: September 1, 2015
    Assignees: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Jun Yaokawa, Yasushi Iwata, Yoshio Sugiyama, Hiroaki Iwahori, Norihiro Amano, Noriyuki Ueno, Takehito Kobayashi
  • Patent number: 9121086
    Abstract: An aspect of the copper alloy sheet contains 5.0 mass % to 12.0 mass % of Zn, 1.1 mass % to 2.5 mass % of Sn, 0.01 mass % to 0.09 mass % of P and 0.6 mass % to 1.5 mass % of Ni with a remainder of Cu and inevitable impurities, and satisfies a relationship of 20?[Zn]+7×[Sn]+15×[P]+4.5×[Ni]?32. The aspect of the copper alloy sheet is manufactured using a manufacturing process including a cold finishing rolling process in which a copper alloy material is cold-rolled, the average crystal grain diameter of the copper alloy material is 1.2 ?m to 5.0 ?m, round or oval precipitates are present in the copper alloy material, the average grain diameter of the precipitates is 4.0 nm to 25.0 nm or a proportion of precipitates having a grain diameter of 4.0 nm to 25.0 nm in the precipitates is 70 % or more.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: September 1, 2015
    Assignee: Mitsubishi Shindoh Co., Ltd.
    Inventors: Keiichiro Oishi, Kouichi Suzaki
  • Patent number: 9108247
    Abstract: A nanopowder and a method of making are disclosed. The nanopowder may be in the form of nanoparticles with an average size of less than about 200 nm and contain a reactive transition metal, such as hafnium, zirconium, or titanium. The nanopowder can be formed in a liquid under sonication by reducing a halide of the transition metal.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: August 18, 2015
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Albert Epshteyn, Andrew P. Purdy
  • Patent number: 9109271
    Abstract: A nickel containing hypereutectic aluminum-silicon sand cast alloy is disclosed herein containing 18-20% by weight silicon, 0.3-1.2% by weight magnesium, 3.0-6.0% by weight nickel, 0.6% by weight maximum iron, 0.4% by weight maximum copper, 0.6% by weight maximum manganese, 0.1% maximum zinc and balance aluminum. The alloy may have a more narrow nickel content of 4.5%-6.0% by weight, and up to 2% by weight cobalt. The alloy may be substantially free from iron, copper and manganese. The alloy of the present invention is preferably sand cast, and most preferably lost foam cast with a pressure of 10 ATM to produce engine parts with high thermal properties that are easily machined.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: August 18, 2015
    Assignee: Brunswick Corporation
    Inventors: Raymond J. Donahue, Terrance M. Cleary, Kevin R. Anderson
  • Patent number: 9109275
    Abstract: Provided is a galvanized steel sheet having a tensile strength of 770 MPa or more including a steel sheet portion, and a plated layer formed on the surface of the steel sheet portion, in which the plated layer is a galvanized plated layer or an galvannealed plated layer, the steel sheet portion has a soft layer that directly adjoins the interface with the plated layer and an inside layer that is other than the soft layer, the thickness D of soft layer is 0.001% to 5% of thickness t of the steel sheet portion, and, when the hardness of the soft layer measured by nano-indentation method is indicated by H1, and the representative hardness of the steel sheet portion measured by the nano-indentation method is indicated by Ha in cross section that goes along the thickness direction of the steel sheet portion, H1 is 5% to 75% of Ha.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: August 18, 2015
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Yasuhide Morimoto, Nobuhiro Fujita, Akihiro Miyasaka, Kazuhiko Honda, Masafumi Azuma, Noriyuki Suzuki, Toshiki Nonaka
  • Patent number: 9108276
    Abstract: The present disclosure relates generally to hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications. More specifically, the present disclosure relates to hardface coatings that include a network of titanium monoboride (TiB) needles or whiskers in a matrix, which are formed from titanium (Ti) and titanium diboride (TiB2) precursors by reactions enabled by the inherent energy provided by the process heat associated with coating deposition and, optionally, coating post-heat treatment. These hardface coatings are pyrophoric, thereby generating further reaction energy internally, and may be applied in a functionally graded manner. The hardface coatings may be deposited in the presence of a number of fluxing agents, beta stabilizers, densification aids, diffusional aids, and multimode particle size distributions to further enhance their performance characteristics.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: August 18, 2015
    Assignee: Consolidated Nuclear Security, LLC
    Inventor: Roland D. Seals
  • Patent number: 9103001
    Abstract: An Ag—Au—Pd ternary alloy bonding wire for semiconductor devices made from 4-10 mass % of gold having a purity of 99.999% or higher, 2-5 mass % of palladium having a purity of 99.99% or higher, and remaining mass % of silver (Ag) having a purity of 99.999% or higher; and this wire contains 15-70 mass ppm of oxidizing non-noble metallic elements, and is thermally annealed before being continuously drawn through dies, and is thermally tempered after being continuously drawn through the dies, and this wire is useful for ball bonding in a nitrogen atmosphere; Ag2Al and a Pd rich layer produced in the interface between the Ag—Au—Pd ternary alloy wire and an aluminum pad suppress the corrosion development between the Ag2Al intermetallic compound layer and the wire.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: August 11, 2015
    Assignee: TANAKA DENSHI KOGYO K.K.
    Inventors: Jun Chiba, Satoshi Teshima, Tasuku Kobayashi, Yuki Antoku
  • Patent number: 9080228
    Abstract: An aspect of the copper alloy sheet contains 5.0 mass % to 12.0 mass % of Zn, 1.1 mass % to 2.5 mass % of Sn, 0.01 mass % to 0.09 mass % of P and 0.6 mass % to 1.5 mass % of Ni with a remainder of Cu and inevitable impurities, and satisfies a relationship of 20?[Zn]+7×[Sn]+15×[P]+4.5×[Ni]?32. The aspect of the copper alloy sheet is manufactured using a manufacturing process including a cold finishing rolling process in which a copper alloy material is cold-rolled, the average crystal grain diameter of the copper alloy material is 1.2 ?m to 5.0 ?m, round or oval precipitates are present in the copper alloy material, the average grain diameter of the precipitates is 4.0 nm to 25.0 nm or a proportion of precipitates having a grain diameter of 4.0 nm to 25.0 nm in the precipitates is 70% or more.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: July 14, 2015
    Assignee: Mitsubishi Shindoh Co., Ltd.
    Inventors: Keiichiro Oishi, Kouichi Suzaki