Patents Examined by Aminah Asghar
  • Patent number: 10893805
    Abstract: For characterizing spatial-temporal dynamics of a medium (1) excitable for deformation, an elastic model of the medium is defined. The medium is imaged at consecutive points in time to obtain a series of images. Shifts of structures of the medium (1) between the images of the series are determined. A dynamic description of a temporal development of spatial deformations of a predefined elastic model of the medium (1) is adapted to match the shifts of the structures; and temporal developments of rate of deformation patterns in the medium (1) are identified from the dynamic description.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: January 19, 2021
    Inventors: Stefan Luther, Jan Christoph
  • Patent number: 10888381
    Abstract: A registration apparatus registers an elongated introduction element (18), like a catheter or a needle, during an interventional procedure, for instance, a brachytherapy or a biopsy. A guide element (13) includes at least one opening which guides the introduction element when being introduced into a living being (2) through the opening. A temperature profile generation element (14) associated with the opening generates a characteristic temperature profile at the opening for being transferred to the introduction element when being present in the opening. A temperature determination unit (15) determines a temperature along the introduction element, and a registration unit (16) registers the introduction element. The registering includes identifying the transferred characteristic temperature profile on the introduction element based on the determined temperature. This allows the registration unit to register the introduction element during the introduction process in a simple and efficient manner.
    Type: Grant
    Filed: January 28, 2015
    Date of Patent: January 12, 2021
    Assignee: Koninklijke Philips N.V.
    Inventors: Guillaume Leopold Theodoros Frederik Hautvast, Dirk Binnekamp, Shyam Bharat, Ehsan Dehghan Marvast, Jochen Kruecker, Molly Lara Flexman, Amir Mohammad Tahmasebi Maraghoosh
  • Patent number: 10874303
    Abstract: Devices for localizing an intracerebral hematoma or blood mass in brain tissue. The devices include an elongate probe a color sensors and a light emitter on the distal end of the probe. The color sensors produce a signal corresponding to the color of light reflected into the color sensors. A display is provided to indicate the color detected.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: December 29, 2020
    Assignee: Rebound Therapeutics Corporation
    Inventors: Ross Tsukashima, Peter G. Davis
  • Patent number: 10869644
    Abstract: The present disclosure relates to systems and methods for extracting a vessel of a lower limb. The methods may include obtaining an original image including a plurality of image data, in some embodiments, each of the plurality of image data may correspond to a pixel (or a voxel), the plurality of image data may include a target data set, the target data set may represent a first structure; extracting a first reference data set from the plurality of image data, in some embodiments, the first reference data set may include the target data set and a second reference data set, the second reference data set may include data of a second structure; extracting the second reference data set from the plurality of image data; and obtaining the target data set based on the first reference data set and the second reference data set.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: December 22, 2020
    Inventors: Peng Zhao, Yufei Mao
  • Patent number: 10813564
    Abstract: According to some aspects a system is provided comprising a low-field magnetic resonance (MR) device, at least one electrophysiological device, and at least one controller configured to operate the low-field MR device to obtain MR data and to operate the at least one electrophysiological device to obtain electrophysiological data.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: October 27, 2020
    Assignee: Hyperfine Research, Inc.
    Inventors: Matthew Scot Rosen, Gregory L. Charvat, Laura Sacolick, Mathieu Sarracanie, Jonathan M. Rothberg, Tyler S. Ralston
  • Patent number: 10806347
    Abstract: A probe has a light guide unit that guides the measurement light, an acoustic wave detection unit that detects a photoacoustic wave, and a storage unit that stores light intensity profile information that represents the light intensity profile of the measurement light emitted by the probe, and transmits a signal of the photoacoustic wave detected by the acoustic wave detection unit to the signal processing unit in a state in which the probe is mounted in the apparatus body. The apparatus body has a reading unit that reads the light intensity profile information from the storage unit, and the intensity adjusting unit adjusts the intensity of the measurement light employing the light intensity profile information read by the reading unit.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: October 20, 2020
    Assignee: FUJIFILM Corporation
    Inventors: Tadashi Kasamatsu, Kazuhiro Hirota
  • Patent number: 10792001
    Abstract: An arrangement includes a gantry of a medical imaging device and an omnidirectional suspension for moving the arrangement relative to a support.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: October 6, 2020
    Inventors: Mathias Hoernig, Hans-Juergen Mueller, Georg Wittmann, Franz Dirauf
  • Patent number: 10758208
    Abstract: A device for ultrasound-assisted reflection and transmission tomography includes a measurement volume filled with an ultrasonic coupling medium and having an opening for inserting a body to be examined and a lateral surface remote from the opening, and a number of ultrasonic transducers arranged remotely from the opening of the measurement volume, arranged in direct contact with the ultrasonic coupling medium, and arranged oriented into the measurement volume. The arrangement of the ultrasonic transducers around the measurement volume aperiodically follows a random uniform distribution.
    Type: Grant
    Filed: February 19, 2015
    Date of Patent: September 1, 2020
    Inventors: Hartmut Gemmeke, Michael Zapf, Torsten Hopp, Robin Dapp, Nicole Ruiter
  • Patent number: 10750993
    Abstract: The present discourse provides a tongue manifestation detecting device. The tongue manifestation detecting device comprises: an image acquisition component configured to acquire a surface image of a tongue; a temperature acquisition component configured to acquire parameters characterized by the temperature of the tongue; and a brightness temperature image generation component configured to generate a brightness temperature image of the tongue based on the parameters characterized by the temperature of the tongue acquired by the temperature acquisition component.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: August 25, 2020
    Inventor: Yangkun Jing
  • Patent number: 10750980
    Abstract: A medical image processing method performed by a computer, for measuring the spatial location of a point on the surface of a patient's body including: acquiring at least two two-dimensional image datasets, wherein each two-dimensional image dataset represents a two-dimensional image of at least a part of the surface which comprises the point, and wherein the two-dimensional images are taken from different and known viewing directions; determining the pixels in the two-dimensional image datasets which show the point on the surface of the body; and calculating the spatial location of the point from the locations of the determined pixels in the two-dimensional image datasets and the viewing directions of the two-dimensional images; wherein the two-dimensional images are thermographic images.
    Type: Grant
    Filed: December 2, 2014
    Date of Patent: August 25, 2020
    Assignee: BRAINLAB AG
    Inventors: Hagen Kaiser, Stephen Froehlich, Stefan Vilsmeier
  • Patent number: 10750992
    Abstract: Certain aspects relate to apparatuses and techniques for non-invasive and non-contact optical imaging that acquires a plurality of images corresponding to both different times and different frequencies. Additionally, alternatives described herein are used with a variety of tissue classification applications including assessing the presence and severity of tissue conditions, such as necrosis and small vessel disease, at a potential or determined amputation site.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: August 25, 2020
    Assignee: SPECTRAL MD, INC.
    Inventors: Wensheng Fan, John Michael DiMaio, Jeffrey Thatcher
  • Patent number: 10716593
    Abstract: An apparatus (100) for guiding a surgical needle with improved accuracy. The apparatus (100) having a base (1) for positioning the apparatus (100) on a patient; a second arc member (6) attached to the base (1); a first arc member (4) moveably attached to the second arc member (6); an arm (2) attached to a needle guide support (3) at one end and moveably attached to the first arc member (4) at a distal end, and an angle marking device (7) attached to the arm (2) to indicate a vertical reference point for measuring the angle of tilt of the arm (2) from the vertical reference point relative to the base (1). Wherein the first arc member (4) is configured to move on the second arc member (6) to facilitate movement of the needle guide support (3) in a cranio-caudal plane and the arm (2) is configured to move on the first arc member (4) to facilitate movement of the needle guide support (3) in an axial plane.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: July 21, 2020
    Inventor: Yen Yung Chieng
  • Patent number: 10702719
    Abstract: Methods for treating an extravascular hematoma in a patient can include liquefying a first portion of the extravascular hematoma by applying a first series of focused acoustic pulses to the extravascular hematoma at a first frequency; and liquefying a second portion of the extravascular hematoma by applying a second series of focused acoustic pulses to the extravascular hematoma at a second frequency. Liquefied remains of the extravascular hematoma can be aspirated from the patient following liquefaction and disruption.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: July 7, 2020
    Inventors: Tatiana Khokhlova, Thomas J. Matula, Wayne L. Monsky, Yak-Nam Wang
  • Patent number: 10694974
    Abstract: Example embodiments of system and method for magnetic resonance imaging (MRI) techniques for planning, real-time monitoring, control, and post-treatment assessment of high intensity focused ultrasound (HIFU) mechanical fractionation of biological material are disclosed. An adapted form of HIFU, referred to as “boiling histotripsy” (BH), can be used to cause mechanical fractionation of biological material. In contrast to conventional HIFU, which cause pure thermal ablation, BH can generate therapeutic destruction of biological tissue with a degree of control and precision that allows the process to be accurately measured and monitored in real-time as well as the outcome of the treatment can be evaluated using a variety of MRI techniques. Real-time monitoring also allow for real-time control of BH.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: June 30, 2020
    Inventors: Ari Partanen, Vera Khokhlova, Navid Farr, Donghoon Lee, Wayne Kreider, Tatiana Khokhlova, Adam Maxwell, Yak-Nam Wang, George Schade, Michael Bailey
  • Patent number: 10690735
    Abstract: In certain embodiments, a coil circuitry component may be configured to detect RF signals from excited spins of at least a region of an organism, where the coil circuitry component comprises a RF detection coil and a detuning circuit for detuning the RF detection coil. A coil signal detection component may be configured to extract at least some of the RF signals detected by the coil circuitry component and to convert the extracted RF signals from analog signal to digital signals. An excitation estimation component may be configured to estimate the excitation pulses from an excitation source and to generate a control timing signal from the estimated excitation pulses to set a state of the detuning circuit. A wireless communication component may be configured to wirelessly transmit the converted RF signals, the estimated excitation pulses, and the control timing signal to an external computer system.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: June 23, 2020
    Assignee: Aivitae LLC
    Inventors: Bob Sueh-chien Hu, Ada Shuk-Yan Poon
  • Patent number: 10667869
    Abstract: Systems and methods for surgical tool navigation, include a movable gantry. A light emitting device is connected to the movable gantry. A range meter connected to the gantry. The distance meter measures a distance between the light emitting device and a surface. In a method of surgical tool navigation, the light emitting device projects light on the surface. The range meter detects the light and measures the distance between the light emitting device and the surface.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: June 2, 2020
    Assignee: General Electric Company
    Inventors: Francois Kotian, Thomas McCarthy
  • Patent number: 10656009
    Abstract: A system is configured to discriminate amongst different environments based in part on characteristics of ambient light. Ambient light intensity is measured using a light-sensitive element configured to generate an output signal indicative of an intensity of light incident on the light-sensitive element. A controller is configured to obtain a set of ambient light measurements using the light-sensitive element, and determine that the measurements correspond to a particular ambient light profile. The particular ambient light profile can be one of multiple ambient light profiles that each correspond to a different environment and/or context.
    Type: Grant
    Filed: July 16, 2014
    Date of Patent: May 19, 2020
    Assignee: Verily Life Sciences LLC
    Inventors: Russell Norman Mirov, Mark Murphy
  • Patent number: 10639125
    Abstract: A system for an automatic multimodal real-time tracking of moving instruments for image plane alignment inside an MRI scanner includes: an MRI scanner, an MRI multi-plane pulse sequence generating unit allowing to interactively modify the position and orientation of one or several image planes in real-time, one or several external optical sensors with high frame rate, preferably a RGB-D sensor or other similar camera system like a stereovision systems, a multimodal marker including at least one MR visible feature and one visual feature able to be tracked by both the MRI scanner and the at least one external optical sensor, a computer for processing in real-time images from both MRI and optical sensor to fuse the detected marker position and orientation or pose from both modalities, and predict the next image plane position and orientation based on the estimated motion of the moving marker.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: May 5, 2020
    Inventors: Michel De Mathelin, Markus Neumann, Loic Cuvillon, Elodie Breton
  • Patent number: 10624610
    Abstract: An existing ultrasonic diagnostic device is used to obtain a color flow image of a target object whose stiffness is to be measured. At this time, a vibration exciter applies a micro vibration with a frequency of n/4 (n represents an odd number equal to or larger than 1) to the target object with respect to a burst frequency of an ultrasonic pulse to generate a shear elastic wave. As a result, a striped pattern corresponding to the stiffness of the target object caused by the shear elastic wave appears on a display of the ultrasonic diagnostic device as a shear elastic wave detection image.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: April 21, 2020
    Assignee: National University Corporation Gunma University
    Inventor: Yoshiki Yamakoshi
  • Patent number: 10568604
    Abstract: To accurately detect a shape and derive information of cartilage based on detected echoes, an ultrasonic diagnosing device includes an ultrasonic transmitter, an ultrasonic receiver, a low-frequency component extracting module, and a deriving module. The ultrasonic transmitter transmits ultrasonic waves to a cartilage in a plurality of bent states, in a state where a relative position of a wave transmitting and receiving surface to the cartilage is fixed. The ultrasonic receiver receives echo signals corresponding to respective frames in each of the plurality of bent states. The low-frequency component extracting module extracts, in a frame direction, low-frequency echo data which is echo data of a frequency component below a given frequency. The deriving module derives information of the cartilage based on the low-frequency echo data.
    Type: Grant
    Filed: February 26, 2015
    Date of Patent: February 25, 2020
    Assignee: Furuno Electric Co., Ltd.
    Inventors: Wataru Kiyan, Satoshi Kawanami