Patents Examined by Amneet Singh
  • Patent number: 11265043
    Abstract: A communication circuit includes a first buffer configured to output a signal indicative of a first logic state or a second logic state, a signal in which the first logic state and the second logic state are defined being input to the first buffer, a second buffer configured to output a signal indicative of any one of the first logic state, the second logic state, and a third logic state, the signal output from the first buffer being input to the second buffer, and a monitoring circuit configured to monitor a logic state indicated by the signal output from the first buffer and cause the second buffer, in a case where the logic state does not change during a first period, to output the signal indicative of the third logic state.
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: March 1, 2022
    Assignee: SOCIONEXT INC.
    Inventor: Shunichiro Masaki
  • Patent number: 11252709
    Abstract: According to some embodiments, a method for use in a frequency-hopping wireless transmitter for transmitting in unlicensed spectrum comprises: obtaining a configuration for a plurality of frequency channels in unlicensed spectrum; and transmitting a data transmission according to a frequency-hopping pattern across the plurality of frequency channels. The configuration for the plurality of frequency channels comprises a first subset of frequency channels for downlink transmission and a second subset of frequency channels for uplink transmission. The frequency channels in the first and second subsets are mutually exclusive. In some embodiments the first and second subset of frequency channels each comprise 160 frequency channels in the 2.4 GHz band, or 50 frequency channels in the 915 MHz band.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: February 15, 2022
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Amitav Mukherjee, Xingqin Lin, Yi-Pin Eric Wang, Cagatay Capar, Jung-Fu Cheng, Havish Koorapaty
  • Patent number: 11245437
    Abstract: A system for co-transmitting discrete power and data over a common high frequency channel includes a power transmitting node, a power receiving node, a data transmitting node, a data receiving node, a power transmitting switch, a power receiving switch, a data transmitting switch, a data receiving switch, a primary power switch, a secondary power switch, a common high frequency channel, a first control unit, and a second control unit. When the primary power switch, power transmitting switch, and power receiving switch are in an activated state, a power signal is transmitted over the common high frequency channel from the power transmitting node to the power receiving node. When the secondary power switch, data transmitting switch, and data receiving switch are in an activated state, a data signal is transmitted over the common high frequency channel from the data transmitting node to the data receiving node.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: February 8, 2022
    Assignee: UNIVERSITY OF ILLINOIS CHICAGO
    Inventors: Sudip K. Mazumder, Ankit Gupta
  • Patent number: 11233558
    Abstract: Embodiments of this application provide a beam tracking method implemented by a terminal device, including: determining, N first beam reference quality values, where the N first beam reference quality values respectively correspond to N beams; selecting, M beams from the N beams based on the N first beam reference quality values and a cell to which each of the N beams belongs, where the M beams belong to a serving cell of the terminal device; and indicating the selected M beams to a network-side device providing a service for the terminal device.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: January 25, 2022
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Xun Tang, Wei Quan
  • Patent number: 11218185
    Abstract: A communication device includes: a wireless communication section configured to wirelessly receive a signal from another communication device; and a control section configured to, in the case where the other communication device transmits a first signal that includes one or more preamble symbols including one or more pulses, acquire a correlation computation result including a correlation value indicating magnitude of correlation between the first signal and a second signal corresponding to the first signal received by the wireless communication section, as an element obtained at each delay time that is time elapsed after the other communication device transmits the preamble symbol at a designated interval, detect a specific element that is a plurality of the elements included in the correlation computation result, in accordance with a predetermined standard, and calculate a reliability parameter that is an indicator indicating whether the detected specific element is appropriate for a processing target.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: January 4, 2022
    Assignee: KABUSHIKI KAISHA TOKAI RIKA DENKI SEISAKUSHO
    Inventors: Yoshiki Oishi, Satoshi Mori, Kenichi Koga, Tatsuya Koike
  • Patent number: 11177817
    Abstract: Provided are a random number generating device and a method of operating the same. The random number generating device includes a source detector, a pulse generator, a counter, and a verification circuit. The source detector detects particles emitted from a source to generate a detection signal. The pulse generator generates pulses corresponding to the detected particles, based on the detection signal. The counter measures time intervals among the pulses and generates binary count values respectively corresponding to the time intervals. The verification circuit determines an output of the binary count values, based on the number of 0 values and the number of 1 values included in the binary count values.
    Type: Grant
    Filed: June 3, 2020
    Date of Patent: November 16, 2021
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Seong Mo Park, Kyung Hwan Park, Tae Wook Kang, Byounggun Choi
  • Patent number: 11153130
    Abstract: An equalizer can connect with N receiving antennas that receive single carrier transmission signals transmitted from M transmitting antenna(s) in the same frequency band at the same time, and receives as input L signals sampled in a sampling period T from each of the N receiving antennas, the equalizer comprising, a first selection part that selects K signal(s) from the L signals for each of the N receiving antennas as signals to be multiplied by a first tap coefficient(s), and a second selection part selects L-K signal(s) to be multiplied by a second tap coefficient(s), from the L signals obtained by multiplying signals in the same sampling period for each of the N receiving antennas by the tap coefficient(s) and performing addition thereof.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: October 19, 2021
    Assignee: NEC CORPORATION
    Inventor: Ryuji Zenkyu
  • Patent number: 11133890
    Abstract: Adaptive multi-standard signal classification and synchronization is disclosed. Devices, systems and methods include an auto-correlation bank and a signal classifier to efficiently and reliably distinguish signals of wireless protocols, such as Bluetooth, 1 megabit-per-second (Mbps) Bluetooth low energy (BLE), 2 Mbps BLE, long range (LR) BLE, ZigBee (ZB), high-rate ZB, and so on. The auto-correlation bank includes a set of auto-correlators with different delays, which facilitate distinguishing between the different wireless protocols. Exemplary aspects can further distinguish and/or compensate for interference sources, such as WiFi, constant wave (CW) clock sources, and so on. In some examples, a frequency offset of an incoming signal can be output for further signal processing. In a parallel path, a cross-correlation circuit facilitates synchronization to the incoming signal based on a signal type identified by the signal classifier.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: September 28, 2021
    Assignee: Qorvo US, Inc.
    Inventor: Andrew Fort
  • Patent number: 11128304
    Abstract: A clock and data recovery device and a jitter tolerance enhancement method thereof are provided. The clock and data recovery device includes a clock and data recovery circuit and a jitter tolerance enhancement circuit. A data input terminal of the clock and data recovery circuit is suitable for receiving a data signal. The clock and data recovery circuit recovers the data signal to a clock. The jitter tolerance enhancement circuit is coupled to the data input terminal of the clock and data recovery circuit to receive the data signal. The jitter tolerance enhancement circuit detects a correlation between the data signal and the clock and correspondingly adjusts a loop gain of the clock and data recovery circuit according to the correlation.
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: September 21, 2021
    Assignee: Novatek Microelectronics Corp.
    Inventors: Yun-Sheng Yao, Shen-Iuan Liu, Yen-Long Lee, Peng-Yu Chen, Chih-Hao Huang, Yao-Hung Kuo
  • Patent number: 11088721
    Abstract: The present invention relates to a device for operating a navigation satellite on the basis of a code division transmission array antenna and a method for operating a navigation satellite. The device for operating a navigation satellite on the basis of a code division transmission array antenna, according to the present invention, comprises: a code generation unit for allocating a spread spectrum code to each of a plurality of antennas; a determination unit for determining, as transmission-end antennas, at least some of the plurality of antennas, to which different spread spectrum codes are allocated; and a processing unit, which arranges each of the transmission-end antennas at predetermined coordinates such that a plurality of signals transmitted from the transmission-end antennas are transmitted to reception-end antennas through multiple paths.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: August 10, 2021
    Assignee: KOREA AEROSPACE RESEARCH INSTITUTE
    Inventors: Sung Hyuck Im, Se Bum Chun, Moon Beom Heo
  • Patent number: 11082091
    Abstract: Aspects of the subject disclosure may include, a system for receiving communication signals that convey data, obtaining energy from a telecommunication line of a telecommunications network where an AC or DC power signal is injected into the telecommunication line and where the energy is utilized by at least a subset of components of a waveguide system, and transmitting electromagnetic waves that convey the data where the electromagnetic waves propagate along a power line of a power grid without requiring an electrical return path. Other embodiments are disclosed.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: August 3, 2021
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: Farhad Barzegar, Giovanni Vannucci, Paul Shala Henry, Thomas M. Willis, III, Irwin Gerszberg, Robert Bennett, Donald J. Barnickel
  • Patent number: 11082104
    Abstract: A network node for a wireless communication system is configured to localize a user node in a first localization operation carried out at a first frequency; determine an accuracy value associated with the first localization operation; and adjust at least one beam parameter for radio beams to be used in a second localization operation based on the determined accuracy value, the second localization operation carried out at a second frequency that is greater than the first frequency. The network node is configured to determine the accuracy value associated with the first localization operation by tracking a rate of change of an angle of a radio beacon signal transmitted from the user node relative to the network node.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: August 3, 2021
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Tao Cai, Mario Costa, Petteri Kela
  • Patent number: 11075657
    Abstract: A quadplexer providing improved insertion loss and pass band steepness is provided. The quadplexer comprises a first filter structure with a first filter element, a second filter structure with a second filter element and an inductive element that is electrically connected in series between common ports of the filter structures and input ports of the filter elements.
    Type: Grant
    Filed: June 20, 2018
    Date of Patent: July 27, 2021
    Assignee: RF360 Europe Gmbh
    Inventors: Chandra Sekhar Reddy Kaipa, Ravi Kiran Challa, Chee Wee Sim
  • Patent number: 11070414
    Abstract: A wireless communication node (300) and method therein for generating multicarrier signals by means of backscattering in a wireless communication system (100) are disclosed. The wireless communication node (300) comprises a plurality A of antennas (310) configured to receive a radio frequency. The wireless communication node (300) further comprises a plurality A of switches (320), each switch has a number M of states. The wireless communication node (300) further comprises a number of impedance matrices (330), each impedance matrix comprising a number M of impedances (Z1, Z2 . . . ), each antenna is coupled to one of the impedance matrices (330) by one of the plurality A switches (320). The wireless communication node (300) further comprises a symbol mapper, a serial to parallel converter and one or more modulators (340) configured to generate a number A of baseband subcarrier signals based on data symbols (342) to be transmitted.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: July 20, 2021
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Miguel Lopez, Thomas Olsson, Leif Wilhelmsson
  • Patent number: 11070308
    Abstract: A transmitter, including a signal processor programmed to generate, based on input serial data, for each of an integer number of subcarriers mutually orthogonal to each other, a respective first parallel data stream. The signal processor is further programmed to modulate each of the integer number of subcarriers respectively with the respective parallel stream to generate the integer number of data-modulated subcarriers. The signal processor is further programmed to modulate a single carrier occupying a same bandwidth as the integer number of subcarriers with a unique word and one or more pilot symbols to generate a second signal. The signal processor combines the first signal and second signal to generate a third signal. The signal processor generates an output signal by applying a transmit filter to the third signal.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: July 20, 2021
    Assignee: Hughes Network Systems, LLC
    Inventors: Liping Chen, Lin-Nan Lee, Bassel F. Beidas, Donglei Fan
  • Patent number: 11032591
    Abstract: The invention relates to the technical field of software systems, and more particularly, to a time division multiplexing method for decoding hardware. The method comprises: Step S1, providing a decoding hardware; Step S2, instantiating the decoding hardware into a first decoder and a second decoder; and Step S3, decoding a first data stream through the first decoder, and decoding a second data stream through the second decoder. Compared to the prior art, the present invention has the advantages that the efficiency of the decoder is improved, and the detect that the efficiency is insufficient due to the fact that the decoder runs under high-load decoding through software when the decoder is insufficient in video call application is overcome, and meanwhile, under the condition that multiple hardware decoders exist, the hardware resources are saved, and a new idea is provided for the running cost.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: June 8, 2021
    Assignee: AMLOGIC (SHANGHAI) CO., LTD.
    Inventor: Shihong Zheng
  • Patent number: 10999117
    Abstract: Disclosed are apparatuses for communication devices. An apparatus for a communication device includes control circuitry configured to determine a discrete Fourier transform (DFT) of a constant amplitude zero autocorrelation waveform (CAZAC) sequence appended with zeros in the time domain to generate a frequency domain interpolated CAZAC sequence. The control circuitry is also configured to determine an inverse discrete Fourier transform (IDFT) of the frequency domain interpolated CAZAC sequence to generate a demodulation reference signal (DMRS), and cause the DMRS to be transmitted through a cellular data network. An apparatus for a communication device includes control circuitry configured to perform a Fourier transform on a received DMRS to obtain a resulting signal, and use the resulting signal as a reference to demodulate orthogonal frequency-division multiplexing (OFDM) symbols.
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: May 4, 2021
    Assignee: APPLE INC.
    Inventors: Sameer Pawar, Huaning Niu, Utsaw Kumar
  • Patent number: 10951455
    Abstract: Methods (C) for converting a data signal (U). The methods may comprise (i) providing an input symbol stream (IB) of input symbols (Bj), the input symbol stream (IB) being representative for the data signal (U) to be converted and (ii) applying to consecutive disjunct partial input symbol sequences (IBp) of a number of p consecutive input symbols (IBj) covering said input symbol stream (IB), a distribution matching process (DM) to generate and output a final output symbol stream (OB) or a preform thereof, wherein the distribution matching process (DM) may be formed by a preceding shell mapping process (SM) and a succeeding amplitude mapping process (AM), wherein said shell mapping process (SM) may be configured to form and output to said amplitude mapping process (AM) for each of said consecutive partial input symbol sequences (IBp) a sequence (sq) of a number of q shell indices (s), and wherein said amplitude mapping process (AM) may be configured to assign to each shell index (s) a tuple of amplitude values.
    Type: Grant
    Filed: November 23, 2017
    Date of Patent: March 16, 2021
    Assignee: Technische Universität München
    Inventors: Georg Böcherer, Patrick Schulte, Fabian Steiner
  • Patent number: 10944445
    Abstract: A set of data signals is transmitted over at least three pairs of wires. The data signals comprise a first and second subsets of data signals. A first set of transmission signals, each transmission signal in the first set of transmission signals being derived from a combination of all of the data signals in the first subset of data signals, is generated. A second set of transmission signals, each transmission signal in the second set of transmission signals being derived from a single respective one of the data signals in the second subset of data signals, is generated. Each of the transmission signals in the first set is transmitted in a common mode over a respective one of the plurality of pairs of wires. Each of the transmission signals in the second set is transmitted over a respective one of the plurality of pairs of wires in a differential mode.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: March 9, 2021
    Assignee: BRITISH TELECOMMUNICATIONS public limited company
    Inventors: Leslie Humphrey, Anas Al Rawi
  • Patent number: 10938614
    Abstract: A transmitter includes a mapping circuit and a framing circuit. The mapping circuit is configured to combine and map a first data sequence and a second data sequence onto orthogonal frequency division multiplexing (OFDM) subcarriers which include first subcarriers and second subcarriers. The framing circuit is configured to generate an OFDM signal from the OFDM subcarriers. The mapping circuit is configured to: map first data included in the first data sequence and second data included in the second data sequence onto the first subcarriers; and map the second data onto the second subcarriers. The first data are not mapped on the second subcarriers.
    Type: Grant
    Filed: April 19, 2019
    Date of Patent: March 2, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY CORPORATION OF AMERICA
    Inventor: Peter Klenner