Patents Examined by Archene A. Turner
  • Patent number: 10337120
    Abstract: An alumina substrate having a carbon-containing phase with an AlN layer formed on a surface of the alumina substrate.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: July 2, 2019
    Assignee: TDK CORPORATION
    Inventors: Kazuhito Yamasawa, Atsushi Ohido, Katsumi Kawasaki
  • Patent number: 10329671
    Abstract: The hard coating layer includes at least a complex nitride or complex carbonitride layer expressed by the composition formula (Ti1-xAlx)(CyN1-y). The average Al content ratio xavg the average C content ratio yavg satisfy 0.60?xavg?0.95 and 0?yavg?0.005, respectively, each of the xavg and yavg is in atomic ratio. The crystal grains constituting the complex nitride or complex carbonitride layer include a crystal grain having the cubic structure. Predetermined average crystal grain misorientation and inclined angle distribution exist in the crystal grains having the cubic structure.
    Type: Grant
    Filed: May 28, 2015
    Date of Patent: June 25, 2019
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Sho Tatsuoka, Kenji Yamaguchi
  • Patent number: 10315387
    Abstract: The present invention relates to tungsten-rhenium coated compounds, materials formed from tungsten-rhenium coated compounds, and to methods of forming the same. In embodiments, tungsten and rhenium are coated on ultra hard material particles to form coated ultra hard material particles, and the coated ultra hard material particles are sintered at high temperature and high pressure.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: June 11, 2019
    Assignee: SMITH INTERNATIONAL, INC.
    Inventors: Yahua Bao, Scott L. Horman
  • Patent number: 10316970
    Abstract: A Ti—Si—C—N coating for a piston ring and a method forming such coating, wherein the deposited coating exhibits a thickness in the range of 10.0 micrometers to 20.0 micrometers and exhibits a coefficient of friction of less than 0.15 and a wear rate of less than 10×10?6 mm3/N/m. The coefficient of friction being measured on a Plint TE77 and the wear rate being measured against an alumina ball of 0.25 inches in diameter at a load of 1 N at 100 rpm in a dry environment. The deposited Ti—Si—C—N coating includes nanocrystalline phases in an amorphous matrix.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: June 11, 2019
    Assignee: Southwest Research Institute
    Inventors: Jianliang Lin, Ronghua Wei, Peter Mark Lee, Daniel Christopher Bitsis, Jr.
  • Patent number: 10316430
    Abstract: Single crystal diamond of which hardness and chipping resistance have been improved in a balanced manner, a method for manufacturing the single crystal diamond, and a tool containing the diamond are provided. Single crystal diamond contains nitrogen atoms, and a ratio of the number of isolated substitutional nitrogen atoms in the single crystal diamond to the total number of nitrogen atoms in the single crystal diamond is not lower than 0.02% and lower than 40%.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: June 11, 2019
    Assignees: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC HARDMETAL CORP.
    Inventors: Yoshiki Nishibayashi, Natsuo Tatsumi, Hitoshi Sumiya, Akihiko Ueda, Yutaka Kobayashi
  • Patent number: 10307830
    Abstract: The hard coating layer includes at least a complex nitride or complex carbonitride layer expressed by the composition formula (Ti1-xAlx)(CyN1-y). The average Al content ratio xavg the average C content ratio yavg satisfy 0.60?xavg?0.95 and 0?yavg?0.005, respectively, each of the xavg and yavg is in atomic ratio. The crystal grains constituting the complex nitride or complex carbonitride layer include a crystal grain having the NaCl face-centered cubic structure. A predetermined average crystal grain misorientation exists in the crystal grains having the NaCl face-centered cubic structure.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: June 4, 2019
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Sho Tatsuoka, Kenji Yamaguchi
  • Patent number: 10309017
    Abstract: A laminated hard coating comprising a layer A and a layer B, wherein the layer A and the layer B differ in composition and are laminated. Layer A contains (MaAlbCrcTad)(BxCyNz) and satisfies 0?a?0.35, 0.05?d?0.35, 0?x?0.15, 0?y?0.50, a+b+c+d=1, and x+y+z=1. M is at least one element selected from the group consisting of V, Nb, Mo, and W; a, b, c and d represent the atomic ratios of M, Al, Cr, and Ta, respectively; and x, y, and z represent the atomic ratios of B, C and N, respectively. The layer B comprises (Ti?Si?)(BxCyNz) and satisfies 0.05???0.35, 0?x?0.15, 0?y?0.50, ?+?=1, and x+y+z=1. ? and ? represent the atomic ratios of Ti and Si, respectively, and x, y, and z represent the atomic ratios of B, C, and N, respectively. One or more layers of each of these layers have been alternately laminated.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: June 4, 2019
    Assignee: Kobe Steel, Ltd.
    Inventors: Maiko Abe, Kenji Yamamoto, Hiroaki Nii
  • Patent number: 10308559
    Abstract: A sintered polycrystalline body and a method of forming the sintered polycrystalline body are disclosed. The sintered polycrystalline body comprises a plurality of particles cubic boron nitride dispersed in a matrix. The matrix includes materials selected from compounds of any of titanium and aluminium. The polycrystalline body further comprises 0.1 to 5.0 volume % of lubricating chalcogenide particles dispersed in the matrix. The chalcogenide particles have a coefficient of friction of less than 0.1 with respect to a workpiece material. Preferably sulfide particles are used as lubricant. Preferably 30-70 vol.-% cBN is contained. Sintering takes place at 1100-1600° C. and 4-8 GPa.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: June 4, 2019
    Assignee: Element Six (UK) Limited
    Inventors: Santonu Ghosh, Martin Ryan Gardener
  • Patent number: 10307831
    Abstract: A surface-coated cutting tool of the invention is a surface-coated cutting tool in which a surface of a tool body is coated with a lower layer and an upper layer, in which at least one layer of the lower layer is made of a TiCN layer, the upper layer has an average layer thickness of 2 to 15 ?m and is made of an Al2O3 layer having an ?-type crystal structure in a chemically deposited state, and in a coincidence grain boundary distribution graph, a highest peak is present in ?3 in the range of ?3 to ?29, a distribution ratio of ?3 occupies 35 to 70% of the whole coincidence grain boundary length of ?3 or more, and a coincidence grain boundary of ?31 or more occupies 25 to 60% of the whole coincidence grain boundary length of ?3 or more.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: June 4, 2019
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Masaki Okude, Kenji Yamaguchi
  • Patent number: 10300533
    Abstract: A coated cutting tool has a substrate and a coating layer formed onto a surface of the substrate. The coating layer contains a hard layer of a composition represented by (TixM1-x)N, wherein M represents at least one kind of an element selected from the group consisting of Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al, Si and Y, and x represents an atomic ratio of a Ti element based on a sum of the Ti element and an M element, and satisfies 0.45?x?0.9. Also, an average grain size of grains constituting the hard layer is 200 nm or more and 600 nm or less, and the grains of the hard layer satisfy predetermined conditions.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: May 28, 2019
    Assignee: TUNGALOY CORPORATION
    Inventor: Tsukasa Shirochi
  • Patent number: 10294585
    Abstract: An alumina substrate wherein an AlN layer is formed on a surface of the alumina substrate and a rare earth elements-containing layer and/or rare earth elements-containing regions is/are formed in the interior of the AlN layer or in the interface between the AlN layer and the alumina substrate.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: May 21, 2019
    Assignee: TDK CORPORATION
    Inventors: Kazuhito Yamasawa, Atsushi Ohido, Katsumi Kawasaki
  • Patent number: 10286454
    Abstract: A composite part includes: a cutting edge part made of cubic boron nitride sintered material or WC-based cemented carbide; a cutting tool body made of cemented carbide; and a bonding part between the cutting edge part and the cutting tool body. A primarily TiC layer containing 50 area % or more of TiC is formed in an interface between the cemented carbide and the bonding part, and has a thickness of 0.5-3 ?m. Ti—Ni enriched layer containing each of Ti and Ni at 30 atomic % or more is formed adjacent to the primarily TiC layer and has a thickness of 0.3-3 ?m. An intermittent net structure containing each of Ti, Ni and C at 10 atomic % or more is formed adjacent to the primarily TiC layer. A straight line overlapping with a major axis of each of crystal grains intersects 3 or more other crystal grains.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: May 14, 2019
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventor: Makoto Igarashi
  • Patent number: 10287670
    Abstract: A low friction top coat over a multilayer metal/ceramic bondcoat provides a conductive substrate, such as a rotary tool, with wear resistance and corrosion resistance. The top coat further provides low friction and anti-stickiness as well as high compressive stress. The high compressive stress provided by the top coat protects against degradation of the tool due to abrasion and torsional and cyclic fatigue. Substrate temperature is strictly controlled during the coating process to preserve the bulk properties of the substrate and the coating. The described coating process is particularly useful when applied to shape memory alloys.
    Type: Grant
    Filed: April 16, 2018
    Date of Patent: May 14, 2019
    Assignee: G & H Technologies, LLC
    Inventors: Vladimir Gorokhovsky, Brad B. Heckerman, Yuhang Cheng
  • Patent number: 10286453
    Abstract: A coated cutting tool insert includes a substrate of cemented carbide, cermet, ceramics, steel or cubic boron nitride having deposited thereon a coating having a total thickness of 60 ?m, including one or more layers having a wear resistant layer of ?-Al2O3 of a thickness of 1 to 45 ?m deposited by chemical vapour deposition (CVD). The ?-Al2O3 layer includes at least two portions, a first thickness portion and a second thickness portion immediately on top of the first thickness portion. The first thickness portion has an essentially columnar ?-Al2O3 grain structure, and at a transition from the first thickness portion to the second thickness portion the grain boundaries of at least 1 out of 25 neighboring grains of the ?-Al2O3 grains undergo a directional change into a direction that is essentially perpendicular, 90±45 degrees, to the grain boundaries in the first thickness portion.
    Type: Grant
    Filed: January 29, 2015
    Date of Patent: May 14, 2019
    Assignee: SANDVIK INTELLECTUAL PROPERTY AB
    Inventors: Sakari Ruppi, Hindrik Engstrom, Jonas Lauridsen, Oscar Alm, Peter Matsson, Tommy Larsson, Erik Lindahl, Jan Engqvist, Dirk Stiens
  • Patent number: 10287672
    Abstract: An arc-ion-plated hard coating having a composition represented by (AlxTiyWz)aN(1-a-b)Ob, wherein x, y, z, a and b are numbers meeting by atomic ratio 0.6?x?0.8, 0.05?y?0.38, 0.02?z?0.2, x+y+z=1, 0.2?a?0.8, and 0.02?b?0.10), and having W—O bonds with substantially no Al—O bonds when identified by X-ray photoelectron spectroscopy, and having only a NaCl-type structure in an X-ray diffraction pattern.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: May 14, 2019
    Assignee: Mitsubishi Hitachi Tool Engineering, Ltd.
    Inventors: Ryoutarou Fuwa, Kazuyuki Kubota, Yuuzoh Fukunaga
  • Patent number: 10280312
    Abstract: Certain example embodiments relate to coated articles supporting high-entropy nitride and/or oxide thing film inclusive coatings, and/or methods of making the same. The example high-entropy alloys systems described herein are heat stable and may be used in optical coatings. A first material system that may be used in connection with certain example embodiments includes SiAlN with one or more (and preferably two or more) of elements such as Hf, Y, Zr, Ti, Ta, and Nb. A second material system that may be used in connection with certain example embodiments includes TiO, with one or more (and preferably two or more) of elements such as Fe, Co, Ni, Sn, Zn, and N. The material systems may in some cases be high-index materials that can serve as a substitute for titanium oxide in layer stacks, in some example applications.
    Type: Grant
    Filed: July 20, 2016
    Date of Patent: May 7, 2019
    Assignee: Guardian Glass, LLC
    Inventor: Jason Blush
  • Patent number: 10280531
    Abstract: A method for producing a diamond single crystal includes implanting an ion other than carbon into a surface of a diamond single crystal seed substrate and thereby decreasing the transmittance of light having a wavelength of 800 nm, the surface having an off-angle of 7 degrees or less with respect to a {100} plane, and homoepitaxially growing a diamond single crystal on the ion-implanted surface of the seed substrate using a chemical vapor synthesis under synthesis conditions where the ratio NC/NH of the number of carbon-containing molecules NC to the number of hydrogen molecules NH in a gas phase is 10% or more and 40% or less, the ratio NN/NC of the number of nitrogen molecules NN to the number of carbon-containing molecules NC in the gas phase is 0.1% or more and 10% or less, and the seed substrate temperature T is 850° C. or more and less than 1000° C.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: May 7, 2019
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Akihiko Ueda, Yoshiki Nishibayashi, Hitoshi Sumiya
  • Patent number: 10273583
    Abstract: A component for high temperature applications includes a substrate and a layer of an aluminum-containing MAX phase material and another material applied to the substrate.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: April 30, 2019
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Christopher W. Strock, Shahram Amini
  • Patent number: 10272498
    Abstract: A composite sintered material contains cubic boron nitride particles and binder particles. The composite sintered material contains 40 vol % or more and 80 vol % or less of the cubic boron nitride particles. The binder particles contain TiCN particles. The composite sintered material shows a first peak belonging to a (200) plane of the TiCN particles in a range in which a Bragg angle 2? is 41.7° or more and 42.6° or less in an X-ray diffraction spectrum measured using a Cu-K? ray as a ray source.
    Type: Grant
    Filed: March 20, 2015
    Date of Patent: April 30, 2019
    Assignee: Sumitomo Electric Hardmetal Corp.
    Inventors: Naoki Watanobe, Yusuke Matsuda, Katsumi Okamura, Nozomi Tsukihara, Makoto Setoyama
  • Patent number: 10273575
    Abstract: In one aspect, articles are described comprising wear resistant coatings employing one or more composite refractory layers. For example, a coated article described herein comprises a substrate and a coating deposited by CVD adhered to the substrate, the coating including a multiphase refractory layer comprising an alumina phase and a zirconia phase, wherein the zirconia phase has a texture coefficient for the (200) growth direction, TC(200), greater than 4.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: April 30, 2019
    Assignee: KENNAMETAL INC.
    Inventors: Rodrigo Alejandro Cooper, Karl Heinz Wendt, Peter Leicht, Bhaskar Alok, Yixiong Liu