Patents Examined by Bac H. Au
  • Patent number: 11862628
    Abstract: Methods, systems, and devices for transistor configurations for multi-deck memory devices are described. A memory device may include a first set of transistors formed in part by doping portions of a first semiconductor substrate of the memory device. The memory device may include a set of memory cells arranged in a stack of decks of memory cells above the first semiconductor substrate and a second semiconductor substrate bonded above the stack of decks. The memory device may include a second set of transistors formed in part by doping portions of the second semiconductor substrate. The stack of decks may include a lower set of one or more decks that is coupled with the first set of transistors and an upper set of one or more decks that is coupled with the second set of transistors.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: January 2, 2024
    Assignee: Micron Technology, Inc.
    Inventor: Fatma Arzum Simsek-Ege
  • Patent number: 11855169
    Abstract: A device includes a gate stack; a gate spacer on a sidewall of the gate stack; a source/drain region adjacent the gate stack; a silicide; and a source/drain contact electrically connected to the source/drain region through the silicide. The silicide includes a conformal first portion in the source/drain region, the conformal first portion comprising a metal and silicon; and a conformal second portion over the conformal first portion, the conformal second portion further disposed on a sidewall of the gate spacer, the conformal second portion comprising the metal, silicon, and nitrogen.
    Type: Grant
    Filed: May 27, 2022
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kai-Di Tzeng, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang
  • Patent number: 11817345
    Abstract: Semiconductor-on-insulator (SOI) field effect transistors (FETs) including body regions having different thicknesses may be formed on an SOI substrate by selectively thinning a region of a top semiconductor layer while preventing thinning of an additional region of the top semiconductor layer. An oxidation process or an etch process may be used to thin the region of the top semiconductor layer, and a patterned oxidation barrier mask or an etch mask may be used to prevent oxidation or etching of the additional portion of the top semiconductor layer. Shallow trench isolation structures may be formed prior to, or after, the selective thinning processing steps. FETs having different depletion region configurations may be formed using the multiple thicknesses of the patterned portions of the top semiconductor layer. For example, partially depleted SOT FETs and fully depleted SOI FETs may be provided.
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: November 14, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Gulbagh Singh, Po-Jen Wang, Kun-Tsang Chuang
  • Patent number: 11817392
    Abstract: An integrated circuit is disclosed. The integrated circuit includes conductive rails, signal rails, at least one first via, and at least one first conductive segment. The at least one first via is disposed between the first conductive layer and the second conductive layer, and couples a first signal rail of the signal rails to at least one of the conductive rails. The first signal rail is configured to transmit a supply signal through the at least one first via and the at least one of the conductive rails to at least one element of the integrated circuit. The at least one first conductive segment is disposed between the first conductive layer and the second conductive layer. The at least one first conductive segment is coupled to the at least one of the conductive rails and is separate from the first signal rail.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: November 14, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shih-Wei Peng, Chia-Tien Wu, Jiann-Tyng Tzeng
  • Patent number: 11817512
    Abstract: Approaches for foil-based metallization of solar cells and the resulting solar cells are described. For example, a method of fabricating a solar cell involves locating a metal foil above a plurality of alternating N-type and P-type semiconductor regions disposed in or above a substrate. The method also involves laser welding the metal foil to the alternating N-type and P-type semiconductor regions. The method also involves patterning the metal foil by laser ablating through at least a portion of the metal foil at regions in alignment with locations between the alternating N-type and P-type semiconductor regions. The laser welding and the patterning are performed at the same time.
    Type: Grant
    Filed: May 23, 2022
    Date of Patent: November 14, 2023
    Assignee: Maxeon Solar Pte. Ltd.
    Inventors: Taeseok Kim, Gabriel Harley, John Wade Viatella, Périne Jaffrennou
  • Patent number: 11798931
    Abstract: A semiconductor package including a first die, a second die and a transparent encapsulation material is provided. The first die includes a first substrate and an optical coupler formed on the first substrate. The second die is disposed on the first die and includes a transparent portion overlapping the optical coupler. The transparent encapsulation material is disposed on the first die and laterally encapsulates the second die.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: October 24, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jie Chen, Hsien-Wei Chen, Ming-Fa Chen
  • Patent number: 11800818
    Abstract: A method for forming a memory device is provided. The method including forming a memory cell stack over a substrate. The memory cell stack includes a bottom metal layer, a top metal layer, and a data storage layer disposed between the bottom metal layer and the top metal layer. The memory cell stack is patterned such that sidewalls of the data storage layer, sidewalls of the top metal layer, and sidewalls of the bottom metal layer are substantially aligned and are slanted at a non-zero angle. A top electrode is formed over the top metal layer.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: October 24, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Chung-Yen Chou
  • Patent number: 11798857
    Abstract: A composition for a sacrificial film includes a polymer, a solvent, and a plasticize compound having an aromatic ring structure. A package includes a die, through insulating vias (TIV), an encapsulant, and a redistribution structure. The die includes a sensing component. The TIVs surround the die. The encapsulant laterally encapsulates the die and the TIVs. The redistribution structure is over the die, the TIVs, and the encapsulant. The redistribution structure has an opening exposing the sensing component of the die. A top surface of the redistribution structure is slanted.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: October 24, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yung-Chi Chu, Hung-Jui Kuo, Yu-Hsiang Hu, Sih-Hao Liao
  • Patent number: 11776914
    Abstract: A package device is provided and includes a redistribution layer. The redistribution layer includes a first dielectric layer, a second dielectric layer, and a conductive layer. The second dielectric layer is disposed on the first dielectric layer, and the second dielectric layer includes a dielectric pattern. The conductive layer is disposed between the first dielectric layer and the second dielectric layer, and the conductive layer includes a first conductive pattern. The dielectric pattern has a through hole, and in a top view of the package device, the first conductive pattern and the through hole are overlapped with each other.
    Type: Grant
    Filed: June 21, 2022
    Date of Patent: October 3, 2023
    Assignee: InnoLux Corporation
    Inventors: Yeong-E Chen, Cheng-En Cheng, Yu-Ting Liu
  • Patent number: 11765927
    Abstract: There is provided a semiconductor device having a semiconductor element and a protective film that is disposed above the semiconductor element and contains silicon atoms and nitrogen atoms, wherein the protective film has an average number of nitrogen atoms bonded to one silicon atom of less than or equal to 1.35.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: September 19, 2023
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Tetsuo Takahashi, Koichi Ishige, Ryuji Ishii
  • Patent number: 11764164
    Abstract: A semiconductor device includes a semiconductor substrate; and a multilevel wiring structure on the semiconductor substrate, the multilevel wiring structure including at least an intermediate metal layer over the semiconductor substrate and an uppermost metal layer over the intermediate metal layer, and the multilevel wiring structure being divided into a main circuit portion and a scribe portion surrounding the main circuit portion; wherein the scribe portion of the multilevel wiring layer includes at least a metal pad exposed in the intermediate metal layer.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: September 19, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Shigeru Sugioka, Keizo Kawakita, Hidenori Yamaguchi, Bang Ning Hsu
  • Patent number: 11758721
    Abstract: A semiconductor device includes a non-volatile memory. The non-volatile memory includes a first dielectric layer disposed on a substrate, a floating gate disposed on the dielectric layer, a control gate. A second dielectric layer is disposed between the floating gate and the control gate, having one of a silicon nitride layer, a silicon oxide layer and multilayers thereof. A third dielectric layer is disposed between the second dielectric layer and the control gate, and includes a dielectric material having a dielectric constant higher than silicon nitride.
    Type: Grant
    Filed: March 15, 2021
    Date of Patent: September 12, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wei Cheng Wu, Li-Feng Teng
  • Patent number: 11749671
    Abstract: The disclosure provides integrated circuit (IC) structures and methods to form the same. Methods according to the disclosure may be performed on a substrate having a first doping type, the substrate extending between a first end and a second end. A deep well is formed within the substrate, the deep well including a well boundary defined between the deep well and a remainder of the substrate. The well boundary is horizontally distal to a midpoint between the first end and the second end of the substrate. A first active semiconductor region is formed at least partially over the substrate, and an oppositely-doped second active semiconductor region is formed at least partially over the deep well.
    Type: Grant
    Filed: October 9, 2020
    Date of Patent: September 5, 2023
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Kaustubh Shanbhag, Glenn Workman
  • Patent number: 11744015
    Abstract: An interposer for electrical connection between a CPU chip and a circuit board is provided. The interposer includes a board-shaped base substrate made of glass having a coefficient of thermal expansion ranging from 3.1×10?6/K to 3.4×10?6/K. The interposer further includes a number of holes having diameters ranging from 20 ?m to 200 ?m. The number of holes ranging from 10 to 10,000 per square centimeter. Conductive paths running on one surface of the board extend right into respective holes and therethrough to the other surface of the board in order to form connection points for the chip.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: August 29, 2023
    Assignee: SCHOTT AG
    Inventor: Oliver Jackl
  • Patent number: 11733604
    Abstract: A method of fabricating a semiconductor device is disclosed. The method includes performing an optical proximity correction (OPC) on design patterns of a layout to generate a corrected layout, and forming a photoresist pattern on a substrate using a photomask manufactured based on the corrected layout. The OPC comprises generating develop targets for the design patterns, respectively, choosing first object patterns based on distances between the develop targets, performing a first OPC operation on the design patterns based on a mask rule to generate first correction patterns, choosing second object patterns by considering distances between the first correction patterns and a target error of each of the first correction patterns, and performing a second OPC operation on the first and second object patterns to generate second correction patterns, the performing the second OPC not based on the mask rule.
    Type: Grant
    Filed: April 21, 2021
    Date of Patent: August 22, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Gyeong Seop Kim, Noyoung Chung
  • Patent number: 11728372
    Abstract: There is provided a semiconductor device capable of improving the performance and/or reliability of the element, by increasing the capacitance of the capacitor, using a capacitor dielectric film including a ferroelectric material and a paraelectric material. The semiconductor device includes first and second electrodes disposed to be spaced apart from each other, and a capacitor dielectric film disposed between the first electrode and the second electrode and including a first dielectric film and a second dielectric film. The first dielectric film includes one of a first monometal oxide film and a first bimetal oxide film, the first dielectric film has an orthorhombic crystal system, the second dielectric film includes a paraelectric material, and a dielectric constant of the capacitor dielectric film is greater than a dielectric constant of the second dielectric film.
    Type: Grant
    Filed: April 6, 2022
    Date of Patent: August 15, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Han Jin Lim, Ki Nam Kim, Hyung Suk Jung, Kyoo Ho Jung, Ki Hyun Hwang
  • Patent number: 11727714
    Abstract: A fingerprint sensor package and method are provided. Embodiments include a sensor and a sensor surface material encapsulated within the fingerprint sensor package. An array of electrodes of the sensor are electrically connected using through vias that are located either in the sensor, in connection blocks separated from the sensor, or through connection blocks, or else connected through other connections such as wire bonds. A high voltage die is attached in order to increase the sensitivity of the fingerprint sensor.
    Type: Grant
    Filed: November 9, 2021
    Date of Patent: August 15, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Chih Huang, Chih-Hua Chen, Yu-Jen Cheng, Chih-Wei Lin, Yu-Feng Chen, Hao-Yi Tsai, Chung-Shi Liu, Chen-Hua Yu
  • Patent number: 11728172
    Abstract: An apparatus includes a first metrology tool configured to measure an initial thickness of a wafer. The apparatus includes a controller connected to the first metrology tool and configured to calculate a polishing time based on a material removal rate, a predetermined thickness and the initial thickness of the wafer. The apparatus includes a polishing tool connected to the controller and configured to polish the wafer for a first duration equal to the polishing time. The apparatus includes a second metrology tool connected to the controller and configured to measure a polished thickness. The controller is configured for receiving the initial thickness from the first metrology tool and the polished thickness from the second metrology tool, updating the material removal rate based on the predetermined thickness, the polishing time and the polished thickness, and calculating an etching time for etching the polished wafer using the polished thickness.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: August 15, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yuan-Hsuan Chen, Kei-Wei Chen, Ying-Lang Wang, Kuo-Hsiu Wei
  • Patent number: 11728264
    Abstract: An interconnect structure is provided. The interconnect structure includes a first metal line. The first metal line includes a first conductive material disposed within a first dielectric layer over a substrate and a second conductive material disposed within the first dielectric layer and directly over a top of the first conductive material. The second conductive material is different from the first conductive material. A second dielectric layer is disposed over the first dielectric layer. A first via comprising a third conductive material is disposed within the second dielectric layer and on a top of the second conductive material. The second conductive material and the third conductive material have lower diffusion coefficients than the first conductive material.
    Type: Grant
    Filed: June 17, 2022
    Date of Patent: August 15, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shin-Yi Yang, Ming-Han Lee, Shau-Lin Shue
  • Patent number: 11728277
    Abstract: A method of manufacturing a semiconductor structure includes steps of providing a first wafer including a first substrate, a first dielectric layer over the first substrate, and a first conductive pad surrounded by the first dielectric layer; providing a second wafer including a second substrate, a second dielectric layer over the second substrate, and a second conductive pad surrounded by the second dielectric layer; bonding the first dielectric layer with the second dielectric layer; forming a first opening extending through the second substrate and partially through the second dielectric layer; disposing a dielectric liner conformal to the first opening; forming a second opening extending through the second dielectric layer and the second conductive pad to at least partially expose the first conductive pad; and disposing a conductive material within the first opening and the second opening to form a conductive via over the first conductive pad.
    Type: Grant
    Filed: November 18, 2021
    Date of Patent: August 15, 2023
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Shing-Yih Shih