Patents Examined by Bernarr E. Gregory
  • Patent number: 11635394
    Abstract: A permittivity sensor, for determining an image of a distribution of permittivity of a material of an object in a scene, comprising an input interface, a hardware processor, and an output interface is provided. The input interface is configured to accept phaseless measurements of propagation of a known incident field through the scene and scattered by the material of the object in the scene. The hardware processor is configured to solve a multi-variable minimization problem over unknown phases of the phaseless measurements and unknown image of the permittivity of the material of the object by minimizing a difference of a nonlinear function of the known incident field and the unknown image with a product of known magnitudes of the phaseless measurements and the unknown phases. Further, the output interface is configured to render the permittivity of the material of the object provided by the solution of the multi-variable minimization problem.
    Type: Grant
    Filed: February 10, 2020
    Date of Patent: April 25, 2023
    Assignee: Mitsubishi Electric Research Laboratories, Inc.
    Inventors: Yanting Ma, Muhammad Asad Lodhi, Hassan Mansour, Petros Boufounos, Dehong Liu
  • Patent number: 11635512
    Abstract: An electronic device includes a controller that performs control to enable switching between a first band mode such that a transmission wave is in a first band and a second band mode such that the transmission wave is in a second band broader than the first band. The controller performs control to switch to the second band mode when an object is detected within a predetermined distance in the first band mode.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: April 25, 2023
    Assignee: KYOCERA Corporation
    Inventors: Tooru Sahara, Masamitsu Nishikido, Yutaka Ootsuki
  • Patent number: 11630203
    Abstract: A ground-based radar system for weather sensing and aircraft tracking includes a ground-based radar that is configured to scan a volume of space associated with a particular aircraft for detecting a weather event in the volume of space, and an electronic control system that is configured to control the ground-based radar. The control system is adapted to track the particular aircraft via tracking data associated with the particular aircraft, and is adapted to detect the weather event via weather data associated with signals from the ground-based radar. The control system is configured to control the ground-based radar to adjust the scan of the volume of space in response to at least the tracking data associated with the particular aircraft being tracked. A geographically diverse radar network that includes multiple ground-based radar systems that communicate with each other also is provided.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: April 18, 2023
    Assignee: Raytheon Company
    Inventors: Michael D. Dubois, Eric J. Knapp
  • Patent number: 11630196
    Abstract: False alarms in RADAR processing are reduced. One or more transforms may be performed to generate an array of spectrum values for a first domain spanning at least one of a range axis, a direction of arrival (DoA) axis, or a velocity axis. One or more spectrum values may be obtained from the array of spectrum values, wherein for each of the one or more spectrum values, (1) the spectrum value is associated with a range estimate, and (2) the spectrum value exceeds a range-dependent maximum threshold established based on a quartic function of the range estimate. The one or more spectrum values identified as exceeding the range-dependent maximum threshold may be excluded, or one or more reduced-magnitude values obtained, to generate an array of modified spectrum values for the first domain, used to generate a range estimate, a DoA estimate, or a velocity estimate, or any combination thereof.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: April 18, 2023
    Assignee: QUALCOMM INCORPORATED
    Inventors: Junyi Li, Dan Zhang, Kapil Gulati
  • Patent number: 11623558
    Abstract: A left front camera (11) is adapted to be mounted on a left front lamp (1LF) of a vehicle to obtain external information of at least ahead of the vehicle. A right front LiDAR sensor (12), a type of which is different from the camera (11), is adapted to be mounted on a right front lamp (1RF) of the vehicle to obtain external information of at least ahead of the vehicle.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: April 11, 2023
    Assignee: KOITO MANUFACTURING CO., LTD.
    Inventors: Yoshiaki Fushimi, Takashi Hori, Teruaki Yamamoto, Yusuke Kasaba
  • Patent number: 11624819
    Abstract: A signal processing device, includes: an azimuth estimation unit configured to estimate an arrival azimuth of a radio wave based on a reception signal of plural antennas; an estimated reception signal calculation unit configured to calculate an estimated reception signal based on an estimation result of the arrival azimuth, for comparison with the reception signal; a residual signal calculation unit configured to calculate a residual signal which is a difference between the reception signal and the estimated reception signal; and a determination unit configured to determine whether the estimation result of the arrival azimuth is correct based on the residual signal.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: April 11, 2023
    Assignee: DENSO TEN Limited
    Inventor: Hiroki Ishikawa
  • Patent number: 11624805
    Abstract: A failure detection apparatus (10) acquires, as target data, sensor data output in a past reference period by a sensor (31), such as a millimeter wave radar or LiDAR (Light Detection And Ranging), mounted on a moving body (100). The failure detection apparatus (10) determines whether detected data indicating a characteristic of a detected object indicated by normal data, which is sensor data output when the sensor (31) is normal, is included in the acquired detected data in the past reference period. In this way, the failure detection apparatus (10) determines whether a failure has occurred in the sensor (31).
    Type: Grant
    Filed: March 7, 2017
    Date of Patent: April 11, 2023
    Assignee: Mitsubishi Electric Corporation
    Inventors: Naoyuki Tsushima, Masahiko Tanimoto, Masahiro Abukawa
  • Patent number: 11624612
    Abstract: A method for determining angular orientation of an object in two or more directions. The method includes: generating a scanning polarized RF source signal; receiving the scanning polarized RF source signal at one or more cavities of a sensor disposed on the object; measuring the scanning polarized RF source signal at a first portion of the sensor; reflecting the scanning polarized RF source signal toward a second portion of the sensor; measuring the scanning polarized RF source signal at the second portion of the sensor; and determining the angular orientation of the object in the two or more directions based on the measured signal at the first and second portions of the sensor.
    Type: Grant
    Filed: March 14, 2021
    Date of Patent: April 11, 2023
    Assignee: OMNITEK PARTNERS LLC
    Inventor: Jahangir S Rastegar
  • Patent number: 11624820
    Abstract: An RF PNT system may include LORAN stations. Each LORAN station may include a LORAN antenna, and a LORAN transmitter coupled to the LORAN antenna and configured to transmit a series of LORAN PNT RF pulses having a time spacing between adjacent LORAN PNT RF pulses. One or more of the LORAN stations may include a message embedding generator coupled to the LORAN transmitter and configured to generate message RF bursts based upon an input message, and with each message RF burst being in the time spacing between respective adjacent LORAN PNT RF pulses.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: April 11, 2023
    Assignee: EAGLE TECHNOLOGY, LLC
    Inventors: Francis E. Parsche, Emil G. Svatik, William C. Adams, Jr.
  • Patent number: 11624842
    Abstract: An apparatus that performs spoof detection of satellite signals based on clock information derived from the satellite signals. The apparatus may include a position, velocity, time (PVT) component that derives the clock information from the satellite signals and provides the clock information to a spoof detection mechanism. In some embodiments, the clock frequency estimate is modeled as a Wiener process.
    Type: Grant
    Filed: March 4, 2021
    Date of Patent: April 11, 2023
    Assignee: THE MITRE CORPORATION
    Inventors: Steven Edward Langel, John David Quartararo, Joseph Samuel Cisneros, Kevin Francis Greco
  • Patent number: 11624801
    Abstract: Aspects of the subject disclosure may include, for example, receiving, from a first antenna and a second antenna of a mobile device, a first wireless signal transmitted by a first anchor of a pair of anchors, receiving, from the first antenna and the second antenna, a second wireless signal that is transmitted by a second anchor of the pair of anchors based upon the second anchor detecting the first wireless signal, determining time difference of arrival information based on the receiving the first wireless signal and the second wireless signal, determining angle of arrival information based on the receiving the first wireless signal and the second wireless signal, and estimating a location of the mobile device based on the time difference of arrival information and the angle of arrival information. Other embodiments are disclosed.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: April 11, 2023
    Assignee: Red Point Positioning Corporation
    Inventors: Zhenzhen Ye, Chunjie Duan
  • Patent number: 11619732
    Abstract: The present disclosure is directed to motion detection and recognition using segmented data from reflections of transmitted signals. An apparatus includes a transmitter, a receiver, and a processor. The processor may cause the transmitter to transmit pulses of an RF signal, the reflections of which are received by a receiver. For each of a number of consecutive segments, the transmitter may transmit N pulses of the RF signal, followed by quiet period. The processor may determine amplitude and phase data for reflections received by the receiver. Over a number of consecutive segments, the processor may detect and classify the amplitude and phase data change over time.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: April 4, 2023
    Assignee: Apple Inc.
    Inventors: Michael Ney, Zohar Agon
  • Patent number: 11619745
    Abstract: Techniques for enhanced Global Navigation Satellite Systems (GNSS) position determination can include capturing an image, from a camera, of obstructions near a mobile device. Orientation information regarding the camera can is used to determine where, in the image, the horizon is situated, and which portions of the sky are blocked by the obstructions from the perspective of the mobile device. Information regarding the location of satellites in the sky is obtained, based on an estimated position of the mobile device. Obstructed satellites can then be identified by comparing the location of the satellites with the obstructed portions of the sky. In a GNSS position determination, information received from the obstructed satellites can then be disregarded or de-weighted accordingly. In some embodiments, the information regarding the blocked portions of the sky can be sent to a server and/or shared with other nearby mobile devices.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: April 4, 2023
    Assignee: QUALCOMM Incorporated
    Inventors: Ning Luo, Gengsheng Zhang, Bo Zheng, Yinghua Yang, Arnold Jason Gum
  • Patent number: 11619470
    Abstract: Systems and methods of calculating a ballistic solution for a projectile are provided. A ballistic system may include an airborne device, a ballistic computer, a data interface, and a flight module, or any combination thereof. The airborne device (e.g., a drone) may be operable to gather wind data along or adjacent to a flight path of a projectile to a target. The ballistic computer may be in data communication with the airborne device to receive the wind data. The ballistic computer may be configured to calculate a ballistic solution for the projectile based on the wind data. The data interface may be in data communication with the ballistic computer to output the ballistic solution to a user. The flight module may be configured to calibrate a flight path of the airborne device.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: April 4, 2023
    Assignee: Knightwerx Inc.
    Inventor: Daniel Baumgartner
  • Patent number: 11614522
    Abstract: A method for measuring a distance to a target based upon time modulated polarization state illumination is provided. The method includes: transmitting a time varying polarized light beam toward the target; capturing, at a plurality of subpixel regions of a receiver, a reflected time varying polarized light beam that has been reflected off of the target; generating a plurality of polarization signals for each subpixel region that are indicative of the polarization state of the captured reflected light beam in the subpixel region; calculating a time difference between the transmitted time varying polarized light beam and the captured reflected light beam by comparing the polarization state of the captured reflected light beam with a polarization state of the transmitted time varying polarized light beam; and calculating the distance by multiplying the calculated time difference with the speed of light.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: March 28, 2023
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Emanuel Mordechai, Tzvi Philipp
  • Patent number: 11614307
    Abstract: Systems and methods for deploying smart munitions may provide targeting metadata generated by surveillance networks to munitions deployment and guidance systems for smart munitions. Targeting metadata may be received by a conduit system and automatically processed to generate guidance and deployment data actionable by a munitions deployment platform.
    Type: Grant
    Filed: June 3, 2021
    Date of Patent: March 28, 2023
    Assignee: Fenix Group, Inc.
    Inventors: David Peterson, Stefan Schaner
  • Patent number: 11609324
    Abstract: Synthetic aperture radar transmit and receive antenna systems and methods of transmitting and receiving radar signals are disclosed. In one embodiment, a transmit and receive antenna system includes a transmit antenna array configured to transmit a plurality of radio frequency transmit signals, the transmit antenna array including a plurality of patch antenna elements mounted to a printed circuit board, each patch antenna element belonging to a subarray, and one or more power amplifiers, each power amplifier feeding a subarray of the patch antenna elements, and a reflectarray receive antenna configured to receive radio frequency signals including a plurality of reflectarray antenna elements mounted to a printed circuit board, at least one antenna feed configured to receive radio frequency signals reflected from the plurality of reflectarray antenna elements, and at least one low noise amplifier electrically connected to the at least one antenna feed.
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: March 21, 2023
    Assignee: Planet Labs Inc.
    Inventors: Kiruthika Devaraj, Ming-chun Paul Lee
  • Patent number: 11609314
    Abstract: Aspects of the present disclosure involve systems, methods, and devices for mitigating Lidar cross-talk. Consistent with some embodiments, a Lidar system is configured to include one or more noise source detectors that detect noise signals that may produce noise in return signals received at the Lidar system. A noise source detector comprises a light sensor to receive a noise signal produced by a noise source and a timing circuit to provide a timing signal indicative of a direction of the noise source relative to an autonomous vehicle on which the Lidar system is mounted. A noise source may be an external Lidar system or a surface in the surrounding environment that is reflecting light signals such as those emitted by an external Lidar system.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: March 21, 2023
    Assignee: UATC, LLC
    Inventor: Soren Juelsgaard
  • Patent number: 11609339
    Abstract: A method of monitoring swimming activity includes: determining at least one of an actual relationship of a mobile device to water or an expected relationship of the mobile device to water; determining ranges to satellites, based on signals received by a satellite positioning system (SPS) receiver of the mobile device, in response to the signals being received by the SPS receiver when the at least one of the actual relationship of the mobile device to water or the expected relationship of the mobile device to water is a desired relationship of the mobile device to water; and determining a location of the mobile device based on the ranges to the satellites.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: March 21, 2023
    Assignee: QUALCOMM INCORPORATED
    Inventors: Jie Wu, Robert Thrasher, Jeffrey Wong, Krishnaranjan Rao
  • Patent number: 11604273
    Abstract: A radar system for detecting the environment of a motor vehicle includes an antenna assembly comprising plastic and including one or more individual antennas for transmitting and/or receiving radar signals. A circuit board includes at least one area that is permeable by radar waves. At least one high-frequency component is coupled to one side of the circuit board and includes at least one radiating element for direct emission or receipt of radar waves in the direction of the circuit board in the least one area that is permeable by radar waves. The antenna assembly is disposed on the other side of the circuit board opposite the at least one high-frequency component. The antenna assembly includes a coupling/decoupling point disposed in the at least one area of the circuit board permeable by radar waves.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: March 14, 2023
    Assignee: Conti Temic microelectronic GmbH
    Inventor: Markus Wintermantel