Patents Examined by Bernarr E. Gregory
  • Patent number: 10656240
    Abstract: Determining a signal emitter location involves receiving a signal of interest (SOI) at detection devices, generating a time stamp corresponding to the arrival of the SOI at each detection device, and communicating digital data samples and the time stamp to a time-difference of arrival (TDOA) computer system. The TDOA computer system determines a TDOA of the SOI at the detection devices relative to an arrival time at a first one of the detection devices having an earliest time stamp. It determines a first solution to identify the emitter location in accordance with a first TDOA solution method. It evaluates the reliability of the first solution and selectively uses a second solution if the first solution is insufficiently reliable.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: May 19, 2020
    Assignee: HARRIS GLOBAL COMMUNICATIONS, INC.
    Inventors: William N. Furman, John W. Nieto, Paul E. Voglewede
  • Patent number: 10658729
    Abstract: Various arrangements for aligning a satellite antenna is presented. An expected date and an expected time for an expected conjunction of the satellite antenna, a satellite that transmits data to a remote terminal and the sun may be determined using positional data. A signal may be received by the antenna that comprises a data transmission from the satellite and interference from the sun. Based on the received signal, a date and time during which an interference level is at a peak interference level can be determined. An azimuthal or elevational alignment for the satellite antenna to be aligned with the satellite based on the time during which the interference level is at the peak interference level may be determined. An alignment of the satellite antenna may be performed based on the determined azimuthal or elevational alignment.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: May 19, 2020
    Assignee: DISH Technologies L.L.C.
    Inventors: Samuel Whitley, Silas Cole
  • Patent number: 10653337
    Abstract: A method includes transmitting one or more local transmit radar signals and receiving a plurality of local receive radar signals that corresponds to the one or more local transmit radar signals being reflected or refracted off an object. The method further includes processing the plurality of local receive radar signals to determine a relative position of the object. The method further includes determining whether the object is positioned within a desired detection volume associated with a position of the transmitter section. When the object is positioned within the desired detection volume, further processing the local receive radar signals to determine movement pattern of the object and whether the movement pattern of the object is within a range of plausible movements for the object. When the movement pattern of the object is within a range of plausible movements for the object, tracking movement of the object within the desired detection volume.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: May 19, 2020
    Inventors: Timothy W. Markison, Sayfe Kiaei, Gary McCoy
  • Patent number: 10649078
    Abstract: A method and a system for detecting geological structure of an extraterrestrial solid planet by using a single-transmitter and multiple-receiver (STMR) radar are provided. The method comprises obtaining the detection of thickness distribution and geological structure of each geological layer on the extraterrestrial solid planet by using a STMR mode, and calculating information of the dielectric coefficients and the depth of the respective geological layer. There are two detection channels having different depths of detection and detection resolutions, in which a first channel operates in a HF/VHF band for detecting geological structure of rocks on the extraterrestrial solid planet, and a second channel operates in a UHF band for detecting geological structure of regolith on the extraterrestrial solid planet. These two detection channels can cooperate with each other, ensuring accuracy and reliability of the detection.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: May 12, 2020
    Assignee: Institute of Electronics, Chinese Academy of Sciences
    Inventors: Guangyou Fang, Yicai Ji, Bin Zhou, Qunying Zhang, Wei Lu, Shaoxiang Shen
  • Patent number: 10648816
    Abstract: An integration navigation device and method in which wireless signal strength data collecting and processing module obtains first position information of a target to be detected; a MEMS sensor data collecting and processing module obtains, according to state change information of the target to be detected, second position information of the target to be detected; a data integration module integrates the first position information and the second position information and feeds back the integrated result to the wireless signal strength data collecting and processing module and the MEMS sensor data collecting and processing module to perform data processing of the next moment.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: May 12, 2020
    Assignee: SOUTHEAST UNIVERSITY
    Inventors: Yuan Zhuang, Jun Yang, Longning Qi
  • Patent number: 10642560
    Abstract: A tracking system is described having at least two mobile transmitter/receivers (“transceivers”) which sense and respond to at least one tracking transceiver. The signals sent to and received from the mobile transceivers are analyzed to get a distance (range) that each is from the tracking transceiver. This can be converted into a position relative to the mobile transceivers. If there are enough transceivers, and at least one knows its absolute location, the absolute location of the mobile transceivers may be determined. Existing smartphones, cellphones, WI-FI® wireless standard routers, BLUETOOTH® wireless standard devices, and near-field devices that have on-board processors, can be modified to run executable code to implement the current invention. They may communicate using at least one of the modalities for tracking.
    Type: Grant
    Filed: February 11, 2016
    Date of Patent: May 5, 2020
    Assignee: POSITION IMAGING, INC.
    Inventors: Edward L. Hill, Brett Bilbrey, Harry Lee Deffebach, III, Krenar Komoni
  • Patent number: 10641582
    Abstract: Systems and methods for deploying smart munitions may provide targeting metadata generated by surveillance networks to munitions deployment and guidance systems for smart munitions. Targeting metadata may be received by a conduit system and automatically processed to generate guidance and deployment data actionable by a munitions deployment platform.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: May 5, 2020
    Assignee: Fenix Group, Inc.
    Inventors: David Peterson, Stefan Schaner
  • Patent number: 10645694
    Abstract: Over the air signaling of dynamic frequency selection operating parameters to client devices is disclosed. In an embodiment, a multi-channel master device determines a maximum range value of a radar detection umbrella associated with the multi-channel master device based on a first range representing a range at which the multi-channel master device detects a first radar transmission transmitted by a radar device at a defined transmission power; determines a compliance range value based on a second range representing a range at which the multi-channel master device detects a second radar transmission transmitted by the radar device at a dynamic frequency selection (DFS) compliance threshold transmission power; and determines a margin range value based on a third range representing a range at which the multi-channel master device detects a third radar transmission transmitted by the radar device at a transmission power that is lower than the dynamic frequency selection compliance threshold transmission power.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: May 5, 2020
    Assignee: Network Performance Research Group LLC
    Inventors: Seung Baek Yi, Kun Ting Tsai, Paul V. Yee, Terry F. K. Ngo, Erick Kurniawan
  • Patent number: 10627477
    Abstract: A disclosed method for a locating system comprises transmitting, by at least two transmitters on each of at least one transmitter platform, at least one signal, where each of the signals transmitted from a different transmitter is modulated at a different oscillation frequency, and the distance between the transmitters on each of the transmitter platforms is known. The method further comprises receiving, by a detector(s) on each of a target platform(s), the signal(s). When the detector(s) receives the signal(s), the signal(s) is focused at a location on the detector(s). Also, the method comprises determining an angle the signal(s) is being transmitted to the detector(s) from the transmitters by using the location(s). Further, the method comprises determining a relative position of each of the transmitter platform(s) with respect to the target platform(s) by using the angle(s) and by using the distance between the transmitters on each of the transmitter platform(s).
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: April 21, 2020
    Assignee: The Boeing Company
    Inventor: Douglas R. Jungwirth
  • Patent number: 10627505
    Abstract: A front end for a radar system and method of operation are described. A timing circuit controls operation of a transmitter circuit and a receiver circuit and outputs a valid data signal indicating whether the receiver circuit will be receiving a reflected radar signal. A converter converts a received radar signal and outputs digital data. A serialising circuit receives the digital data and supplies a serial data stream including the digital data for a data processing device. The valid data signal is also communicated to the converter to cause the converter to output a bit pattern corresponding to a code word when the valid data signals indicates that the receiver circuit will not be receiving the reflected radar signal and to output a bit pattern corresponding to a data word including radar data when the valid data signals indicates that the receiver circuit will be receiving the reflected radar signal.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: April 21, 2020
    Assignee: NXP B.V.
    Inventors: Erwin Janssen, Cicero Silveira Vaucher
  • Patent number: 10627526
    Abstract: A position is determined using GNSS (Global Navigation Satellite Systems) with an antenna assembly having a number of antennas that are oriented with different direction vectors. Antenna-received signals are supplied to an evaluation assembly, which includes GNSS receivers and an evaluation device. The antenna-received signals are detected with regard to their satellite-related signal-to-noise ratio and, in relation to each satellite, the satellite-specific signal-to-noise ratio measured values that are positively distinguished in their signal-to-noise ratio from other signal-to-noise ratio measured values relating to the same satellite are selected. A satellite-related main direction vector signal is formed from each of the direction vector signals of the antennas. The main direction vector signals are compared with the orientation vector signals that characterize the position of the respective satellites in orbit; in the event of minor deviations a position indication is given.
    Type: Grant
    Filed: February 22, 2016
    Date of Patent: April 21, 2020
    Assignee: Siemens Mobility GmbH
    Inventors: Hendrik Ibendorf, Olaf Richter
  • Patent number: 10629998
    Abstract: The present disclosure provides a radar apparatus and a method of correcting an error of the radar apparatus. According to the present disclosure a first transmitting antenna group and a first receiving antenna group are constituted by elongating some of a plurality of transmitting antennas and a plurality of receiving antennas in a first direction of vertical directions, a second transmitting antenna group and a second receiving antenna group are constituted by elongating the other antennas in a second direction opposite to the first direction, and one or more of transmitting antennas that transmit transmission signals and one or more of receiving antennas that receive reflection signals are included in different groups, thereby being able to measure elevation information of an object and correct a mounting position of the radar apparatus on the basis of the information.
    Type: Grant
    Filed: November 22, 2017
    Date of Patent: April 21, 2020
    Assignee: MANDO CORPORTION
    Inventors: Hae Sueng Lim, Jae Eun Lee, Seong Hee Jeong
  • Patent number: 10630249
    Abstract: Disclosed examples include a radar system that operates in a first mode and a second mode. In the first mode, the system detects the presence of an object within a threshold range. In response to detection of the presence of the object, the system transitions to the second mode, and the system generates range data, velocity data, and angle data of the object in the second mode. When the object is no longer detected within the threshold range, the system transitions back to the first mode.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: April 21, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sandeep Rao, Brian Ginsburg
  • Patent number: 10618623
    Abstract: Disclosed in the present invention is a high-speed aircraft, comprising a shell and an engine, an outer fluid channel and an inner fluid channel being arranged in succession within the shell, the outer fluid channel and the inner fluid channel respectively connecting to the exterior by means of their own air vent; the outer fluid channel is connected to an air suction port of the engine, such that the pressure difference produced by the flow rate within the outer fluid channel being greater than the flow rate within the inner fluid channel acts as the driving force source of the aircraft. Also disclosed in the present invention is an aircraft having greater lift. The present invention provides an innovative method and apparatus for a driving force source obtained from fluid resistance, thus changing the mutual contradiction of a traditional driving apparatus directing external force to itself whilst also needing to use more driving force to overcome fluid resistance.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: April 14, 2020
    Inventor: Xiaoyi Zhu
  • Patent number: 10612901
    Abstract: A real-time compensation system of a projectile includes at least one flight controller, at least one imager device, at least one gyroscope, and at least one processor. The at least one flight controller is configured to rotate the projectile about an axis between a first orientation and a second orientation. The at least one imager device is configured to capture a first image at the first orientation and a second image at the second orientation. The at least one gyroscope is configured to sense a first angular rate of the projectile as the projectile rotates from the first orientation to the second orientation. The at least one processor is configured to determine a first rotation angle based upon the first and second images and a second rotation angle based upon the angular rate sensed by the at least one gyroscope, and determine a gyroscope compensation parameter.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: April 7, 2020
    Assignee: Simmonds Precision Products, Inc.
    Inventors: David Ellis, Todd Anthony Ell
  • Patent number: 10615507
    Abstract: An unmanned aerial vehicle (UAV) landing marker that absorbs incoming radar signals emitted by a UAV and/or disperses reflected radar signals. The absorption and/or dispersion of the radar signals creates a reduced radar return in comparison to the environment about the landing marker. The UAV can detect the area of reduced radar return and determine that it is a landing marker. Additionally, the UAV can determine a position of the landing marker relative to the UAV, based on the reduced radar return, to effect delivery of an item by the UAV. The landing marker can include materials, structures and/or features to absorb and/or disperse radar signals to cause the reduced radar return.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: April 7, 2020
    Assignee: Amazon Technologies, Inc.
    Inventors: Scott Michael Wilcox, Joshua John Watson, Scott Raymond Harris
  • Patent number: 10605925
    Abstract: Processing GPS drifting. A method and system for processing GPS drifting is included. The method includes: determining predicted error information on position correction of a device within a region; obtaining a GPS initial position and a corrected position of the device within the region; and determining GPS drifting of the region based on the predicted error information, the GPS initial position, and the corrected position of at least one device within the region. The method and system of the present application can effectively ameliorate GPS drifting issues.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: March 31, 2020
    Assignee: International Business Machines Corporation
    Inventors: Min Gong, Yun Jie Qiu, Yu Wang, Junchi Yan
  • Patent number: 10605910
    Abstract: The invention discloses a golf ball tracking system, which includes a distributed sensor and processor system adapted to simultaneously track the trajectories of multiple golf balls hit by one of more golfers. The system is adapted to keep track of the location of the golfers to enable the allocation of shots to the correct golfer. The system is operated at a golf driving range, where multiple players can hit balls from anywhere within a designated area and/or fixed hitting bay locations. Multilateration is used to determine the location of multiple targets in 3D space, based on the reported range and Doppler from distributed radar sensors.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: March 31, 2020
    Assignee: ALPHAWAVE GOLF (PTY) LTD
    Inventors: Leendert Johannes Du Toit, Sarel Jacobus Marais
  • Patent number: 10608317
    Abstract: A communication system, which is applied to a space, includes a first transceiver and a communication device. The first transceiver is fixedly disposed in the space. The communication device is movable in the space. The communication device includes a base, a second transceiver, a detection circuit, an arm and a processor. The second transceiver is oriented to an orientation and configured to build a signal transmission with the first transceiver. The detection circuit is configured to detect a displacement or rotation of the communication device with respect to the first transceiver, in order to generate detection information. One end of the arm is connected to the base, and another end of the arm is connected to the second transceiver. The processor is configured to control an operation of the arm according to the detection information, in order to maintain the orientation of second transceiver directing to the first transceiver.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: March 31, 2020
    Assignee: HTC Corporation
    Inventors: Ta-Chun Pu, Chieh-Sen Lee, Chien-Ting Ho, Yen-Liang Kuo
  • Patent number: 10605895
    Abstract: The present disclosure relates to enabling a radar system relates to identify airborne and spaceborne objects in a nuclear-scintillated environment. In some embodiments, the radar system transmits a plurality of narrowband signals corresponding to a plurality of consecutive segments of a linear frequency modulated (LFM) waveform. The radar system receives a plurality of echo signals corresponding to the plurality of narrowband signals being reflected from an airborne or spaceborne object. Upon processing the plurality of echo signals to generate a plurality of waveform segments, the radar system combines the plurality of waveform segments to produce a composite waveform. Then, the radar system applies a matched filter to the composite waveform using the LFM waveform to identify the airborne or spaceborne object.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: March 31, 2020
    Assignee: The MITRE Corporation
    Inventor: Eric G. Forrest