Patents Examined by Bryan R Perez
  • Patent number: 10739046
    Abstract: A compressor is configured such that an axis center of a rotating shaft for transmitting rotation of a rotor to a compressing unit for compressing a refrigerant is offset from a rotor center of the rotor, and, when the rotor is divided into, with respect to the rotor center, a first portion located on a side in a direction from the axis center to the rotor center and a second portion located on a side in a direction from the rotor center to the axis center, a magnetic force of the first portion is stronger than a magnetic force of the second portion. This configuration allows the rotor to generate non-uniform magnetic attractive forces during the rotation of the rotor and thereby can suppress vibration generated due to rotation of an eccentric portion of the compressing unit and reduce noise.
    Type: Grant
    Filed: June 17, 2014
    Date of Patent: August 11, 2020
    Assignee: Mitsubishi Electric Corporation
    Inventor: Kazuchika Tsuchida
  • Patent number: 10742120
    Abstract: A power converter such as e.g. a buck converter operated in pulse frequency modulation PFM mode and a method are presented. The power converter has an inductor, a switching element, threshold current generator, resistive element, threshold current comparator, a current sensing means, and a current injecting means. The switching element controls an inductor current flowing through the inductor. The threshold current generator generates a threshold current based on a comparison between a reference voltage and an output voltage. The resistive element generates a threshold voltage at a reference node. The threshold current comparator generates, by comparing said threshold voltage with an inductor voltage, a control signal for turning off or on the switching element. The current sensing means senses a current indicative of the inductor current. The current injecting means generates an injection current based on the current sensed by the sensing means.
    Type: Grant
    Filed: April 3, 2019
    Date of Patent: August 11, 2020
    Assignee: Dialog Semiconductor (UK) Limited
    Inventor: Marius Padure
  • Patent number: 10734877
    Abstract: An electromagnetic transducer includes a magnetic assembly and a coil assembly. The magnetic assembly may include an inner magnet subassembly and an outer magnet subassembly. The inner magnet subassembly and the outer magnet subassembly each have a plurality of axial magnets arranged in a stacked configuration with a spacer disposed between vertically adjacent axial magnets. The coil assembly includes an inner coil subassembly and an outer coil subassembly. The inner coil subassembly is disposed between the inner magnet subassembly and the outer magnet subassembly, and the outer coil subassembly is disposed around the outer magnet subassembly. The coil assembly and the magnetic assembly are configured to move relative to each other.
    Type: Grant
    Filed: June 10, 2014
    Date of Patent: August 4, 2020
    Assignee: THE REGENTS OF THE UNVERSITY OF MICHIGAN
    Inventors: Iman Shahosseini, Khalil Najafi, Rebecca L. Peterson
  • Patent number: 10734690
    Abstract: A self-diagnosing battery cell monitoring system having a battery cell voltage monitoring IC with a digital voltage substrate, an analog differential voltage substrate, and an analog voltage substrate is provided. The first diagnostic handler application commands a digital input-output device to generate control signals to transition a contactor to an open operational state if the first diagnostic flag associated with the digital voltage substrate is equal to the first encoded fault value, or the second diagnostic flag associated with the analog differential voltage substrate is equal to the second encoded fault value, or the third diagnostic flag associated with the analog voltage substrate is equal to the third encoded fault value.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: August 4, 2020
    Assignee: LG Chem, Ltd.
    Inventor: Kerfegar K. Katrak
  • Patent number: 10734905
    Abstract: A DC-DC converter can include: a switched capacitor converter including at least one switch group and at least one capacitor, where each of the at least one switch group includes two switches are coupled in series, and at least one of the capacitors is coupled in parallel with a corresponding one of the switch groups; and at least one switch converter, where each switch converter includes at least one primary magnetic circuit and is configured to share at least one of the switch groups, one terminal of the primary magnetic circuit is coupled to an intermediate node of the shared switch group, the intermediate node is a common coupling point of two switches of the shared switch group, and the switch converter is an unidirectional power converter.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: August 4, 2020
    Assignee: Silergy Semiconductor Technology (Hangzhou) LTD
    Inventors: Chen Zhao, Wang Zhang
  • Patent number: 10734875
    Abstract: A rotary electric machine includes a rotor that rotates around a rotation axis serving as a center and has a plurality of salient poles protruding in directions perpendicular to the rotation axis, and a stator that includes an annular structural body disposed radially outside the rotor and surrounding the rotor, and 6√ón windings provided along a circumferential direction of the structural body, a field signal for generating field magnetic flux and a drive signal for driving the rotor as a three-phase rotary electric machine being superimposed on each other to be input to each of the windings. n is a natural number equal to or larger than one.
    Type: Grant
    Filed: June 2, 2015
    Date of Patent: August 4, 2020
    Assignee: OSAKA UNIVERSITY
    Inventors: Katsuhiro Hirata, Noboru Niguchi, Yuki Ohno, Akira Kohara, Masayuki Katoh, Hajime Ukaji, Teiichirou Chiba
  • Patent number: 10720846
    Abstract: Systems, devices, and methods are provided to enable power converters to use two or more sensing elements to reliably detect a short circuit (or soft-short circuit) existing in the power converter and distinguish these conditions from other operating conditions, such as low voltage conditions or normal operating conditions. The disclosed embodiments enable the accurate detection of fault conditions, such as short circuits or soft short conditions, using a number of sensing elements, such as sense resistors and the inherent resistance of switching devices, while preventing the detection of false positives due to other factors such as low input voltage.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: July 21, 2020
    Assignee: DIALOG SEMICONDUCTOR INC.
    Inventors: Guang Feng, Pengju Kong, Juyoung Yoon
  • Patent number: 10707789
    Abstract: Systems and methods for controlling a power converter in a wind turbine system are provided. The wind turbine system can include a generator and a power converter. The power converter can include a plurality of switching devices and a current damping module. A method can include determining, by a control device, a flux magnitude of an air-gap between a rotor and a stator in the generator. The method can further include determining, by the control device, an orientation adjustment reference signal for the current damping module based at least in part on the flux magnitude. The method can further include controlling, by the control device, the power converter based at least in part on the orientation adjustment reference signal.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: July 7, 2020
    Assignee: General Electric Company
    Inventors: Wei Ren, Einar Vaughn Larsen
  • Patent number: 10707767
    Abstract: Techniques are provided for avoiding an avalanche breakdown voltage across a synchronous rectification (SR) switch on the secondary side of an isolated switched-mode power converter operating in a low-power mode, e.g., a burst mode, during which a load of the power converter draws negligible current. This is accomplished via use of a two-level switch driver for controlling a power switch on the primary side of the power converter. The two-level switch driver is configured to source low current levels to a control terminal (e.g., gate) of the power switch during burst-mode operation. This low current reduces the slope of the rising edge of voltage pulses on the primary and secondary sides of the power converter which, in turn, limits the peak of the voltage ringing across the SR switch. By limiting the voltage in this manner, the SR switch avoids entering avalanche breakdown.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: July 7, 2020
    Assignee: Infineon Technologies Austria AG
    Inventors: Cesar Augusto Braz, Roberto Quaglino
  • Patent number: 10707761
    Abstract: A power converter circuit included in a computer system may charge and discharge a switch node coupled to a regulated power supply node via an inductor. During a charge cycle, the power converter circuit may generate a reference ramp signal that has an initial voltage level greater than that of the switch node. The power converter may also generate a sense ramp signal using the voltage level of the switch node, and halt the charge cycle using results of a comparison of the respective voltage levels of the reference ramp signal and the sense ramp signal.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: July 7, 2020
    Assignee: Apple Inc.
    Inventors: Michael Couleur, Andrea Acquas, Nicola Rasera
  • Patent number: 10707783
    Abstract: An electrostatic induction device is provided which includes at least one first element including a first electrode, a second electrode electrically connected to the first electrode, and a third electrode electrically connected to the first electrode and the second electrode, at least one second element including a charged area having been charged with positive or negative charges and moves while adjacent to the first element so as to cause an electrostatic induction action with the first element, and a third element which is electrically connected to the first element, and receives, from the first element, a first electric current generated between the first and the second electrode, a second electric current generated between the first and the third electrode, and a third electric current generated between the second and the third electrode, by the movement of the second element, and rectifies the received first, second and third electric currents.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: July 7, 2020
    Assignee: Samsung Electronics Co., Ltd
    Inventors: Bongjae Rhee, Sungsoo Moon, Kemsuk Seo, Sangmoon Lee, Changsu Lee, Jihun Heo
  • Patent number: 10700584
    Abstract: A linear vibration motor includes a bracket, a coil provided to the bracket, a case for covering the bracket, a mass positioned in the case, at least two or more springs, each of which one end is connected to the mass and the other end is connected to one surface of the case, a magnet coupled to the mass to be integrated therewith and facing the coil, a plate coupled to the mass to be integrated therewith and positioned on the magnet, and a friction reducing part provided on at least one surface of the mass and reducing friction between the mass and the bracket. The mass vibrates in the horizontal direction such that the thickness of the linear vibration motor is not increased but can be manufactured thin. Therefore, it is advantageous in terms of space when the linear vibration motor is arranged in a mobile phone.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: June 30, 2020
    Assignee: MPLUS CO., LTD.
    Inventor: Yeon Ho Son
  • Patent number: 10693362
    Abstract: A switching power supply includes an insulated transformer, a full-bridge circuit which converts input DC power into AC power and outputs the AC power to a primary-side coil, an output circuit which converts AC power input from secondary-side coils into DC power and outputs the DC power, and a control circuit which controls the full-bridge circuit by using a phase shift method based on voltage output by the output circuit. When a measured value of the amount of phase shift determined from at least one of the voltage and current output by the output circuit is smaller than a theoretical value of the amount of phase shift corresponding to the switching power supply operating in a continuous current mode, the control circuit prolongs dead time used in the full-bridge circuit in accordance with the difference between the measured value and the theoretical value.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: June 23, 2020
    Assignee: FDK CORPORATION
    Inventors: Kenji Hamada, Tadashi Sato, Norio Fukui
  • Patent number: 10678284
    Abstract: Apparatuses and methods for providing a current independent of temperature are described. An example apparatus includes a current generator that includes two components that are configured to respond equally and opposite to changes in temperature. The responses of the two components may allow a current provided by the current generator to remain independent of temperature. One of the two components in the current generator may mirror a component included in a voltage source that is configured to provide a voltage to the current generator.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: June 9, 2020
    Assignee: Micron Technology, Inc.
    Inventor: Wei Lu Chu
  • Patent number: 10680521
    Abstract: An inductor and a shunt switch circuit are connected in parallel between an input node and an intermediate node. A first power transistor is connected between the intermediate node and a ground node. A second power transistor is connected between the intermediate node and an output node. The first and second power transistors are driven in response to a pulse width modulation (PWM) drive cycle having an on-time and an off-time. The input node receives a DC input voltage and a DC output voltage is generated at the output node. A control circuit senses the input and output nodes and determines whether the DC input voltage is within a threshold voltage of the DC output voltage. In response to that determination, the shunt switch circuit is turned on only during the off-time of the PWM drive cycle.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: June 9, 2020
    Assignee: STMicroelectronics S.r.l.
    Inventors: Alessandro Bertolini, Alberto Cattani
  • Patent number: 10681782
    Abstract: A light-emitting diode (LED) lighting device has an LED and a power supply including an inductor coupled to the LED. A cathode of the LED is coupled to the inductor opposite an anode of the LED. The inductor is coupled for receiving a first power signal. A transistor includes a conduction terminal coupled to the inductor to enable current through the inductor. A current from the first power signal is switched to generate a second power signal. A first diode includes an anode coupled to the inductor opposite the cathode of the LED. A controller includes a first terminal coupled to a cathode of the first diode and a second terminal coupled to a control terminal of the transistor. A zener diode is coupled to the first terminal of the controller. A capacitor is coupled between the first diode and inductor. A second diode is coupled to the first diode.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: June 9, 2020
    Assignee: Enertron, Inc.
    Inventors: Der Jeou Chou, Ming Yi Chan
  • Patent number: 10666137
    Abstract: An inductor conducts a first current, which is variable. A first transistor is coupled through the inductor to an output node. The first transistor alternately switches on and off in response to a voltage signal, so that the first current is: enhanced while the first transistor is switched on in response to the voltage signal; and limited while the first transistor is switched off in response to the voltage signal. A second transistor is coupled to the first transistor. The second transistor conducts a second current, which is variable. On/off switching of the second transistor is independent of the voltage signal. Control circuitry senses the second current and adjusts the voltage signal to alternately switch the first transistor on and off in response to: the sensing of the second current; and a voltage of the output node.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: May 26, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Erick Omar Torres, Harish Venkataraman, Philomena C. Brady
  • Patent number: 10666131
    Abstract: A dead-time voltage compensation apparatus and a dead-time voltage compensation method are provided. The method includes: converting a DC voltage of an input end of a single-phase DC-AC inverter into a unipolar AC voltage; calculating first to third current values based on a first inductor current value of a inductor, calculating first voltage compensation amounts of a first dead-time and a third dead-time of an AC voltage and a second inductor current value of the AC voltage based on polarities of the first to third current values, calculating fourth to sixth current values based on the second inductor current value, calculating second voltage compensation amounts of a second dead-time and a fourth dead-time of the AC voltage based on polarities of the fourth to sixth current values, and compensating a control reference signal of a processor based on the first and second voltage compensation amounts.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: May 26, 2020
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Yoshihiro Konishi, Yeh-Hsiang Ho
  • Patent number: 10658918
    Abstract: A switching cell includes: a half-bridge circuit including a first electronic switch and a second electronic switch connected in series between a first input terminal and a second input terminal of an electronic converter, wherein a first capacitor is connected in parallel to the first electronic switch and a second capacitor is connected in parallel to the second electronic switch; a first inductor connected between a first output terminal of the electronic converter and an intermediate point between the first electronic switch and the second electronic switch; a second inductor and a first capacitor connected in series between a first terminal of the first inductor and the intermediate point; a switching circuit connected between the first terminal of the first inductor and a second output terminal of the electronic converter; and a third capacitance connected between the first terminal of the first inductor and the second input terminal.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: May 19, 2020
    Assignee: STMICROELECTRONICS S.R.L.
    Inventor: Osvaldo Enrico Zambetti
  • Patent number: 10651760
    Abstract: For a power supply with a reduced number of semiconductor devices, a phase shifting transformer receives a three-phase primary voltage and steps the three-phase primary voltage one of up and down to a secondary voltage with a plurality of secondary winding sets. There is phase shifting between different secondary winding sets. A plurality of power cell sets each comprise a plurality of power cells cascaded connected, and each power cell receives one of a single phase and a three-phase voltage of a distinct secondary winding set of the phase shifting transformer. Each power cell comprises no more than eight power semiconductor devices organized as a rectifier and an inverter. Each power semiconductor device is one of a diode and an active switch. Each power cell set generates one phase of a three-phase alternating current output.
    Type: Grant
    Filed: April 24, 2019
    Date of Patent: May 12, 2020
    Assignee: Rockwell Automation Technologies, Inc
    Inventors: Zhong Y. Cheng, Navid R. Zargari, Ye Zhang