Abstract: The present invention provides an array substrate, a liquid crystal display device comprising the same, and a method for forming the same. The array substrate comprises a gate line, a data line, a signal line and a pixel electrode formed thereon. The gate line intersects the data line to define a plurality of pixel regions in which the pixel electrodes are formed. Each of the pixel electrodes overlaps the signal line to form a first sensing capacitor and overlaps the gate line to form a second sensing capacitor.
Abstract: Disclosed is a luminance compensation apparatus of an organic light emitting diode panel including a reference pixel element unit that is installed at an outer peripheral portion of a display area on an organic light emitting diode panel and operate corresponding to a pixel element aligned in the display area, and a driving chip that is provided in an area including the reference pixel element unit of the outer peripheral portion of the display area, compares a luminance value of light incident from the reference pixel element unit with a reference luminance value to calculate a luminance deviation value based on a comparison result, controls driving of pixel elements aligned in the display area according to the luminance deviation value, and allows light, luminance deviation of which has been compensated, to be irradiated.
Abstract: The present invention provides a liquid crystal display device, a pixel structure and a driving method. The first scanning line of the first scanning line transmits a scanning signal of the first switching unit, charging the pixel electrode, after the charge, when the pixel electrode is in the state of holding power, the second scanning line transmits the second scanning signal to turn on the second switching unit, the common electrode line provides the common voltage to the pixel electrode, in order to rise the pixel electrode voltage to the common voltage. Through the above ways, on one hand the present invention can ensure the charging time of the pixel electrode and the resolution of the liquid crystal display device, on the other hand inserting the black image, achieving the inserting black image technique, reducing the 3D cross talk.
Type:
Grant
Filed:
October 23, 2013
Date of Patent:
January 17, 2017
Assignee:
Shenzhen China Star Optoelectronics Technology Co., Ltd
Abstract: An organic light-emitting display device includes: an organic light-emitting panel comprising a plurality of pixel regions, each pixel region comprising a scan line and a data line crossing each other, each pixel region further comprising an organic light-emission element and a drive transistor configured to drive the organic light emission element; and a circuit configured to sense a threshold voltage of the drive transistor in a sensing interval and control a light emission of the organic light emission element within the pixel region in a display interval.
Type:
Grant
Filed:
October 11, 2012
Date of Patent:
January 17, 2017
Assignee:
LG DISPLAY CO., LTD.
Inventors:
Jin Hyoung Kim, Seung Tae Kim, Kyoung Sik Choi, Ui Jeong
Abstract: A thin electromagnetic handwriting pen includes a casing unit, a circuit unit, an electromagnetic unit and a pen core unit. The casing unit includes a thin pen-shaped casing structure. The circuit unit includes a circuit substrate disposed inside the thin pen-shaped casing structure. The electromagnetic unit includes a hollow holder and an electromagnetic coil wound around the hollow holder. Both the hollow holder and the electromagnetic coil are embedded in the thin pen-shaped casing structure, and the electromagnetic coil is fixed between the thin pen-shaped casing structure and the hollow holder and electrically connected to the circuit substrate. The pen core unit includes a pen core structure movably disposed inside the thin pen-shaped casing structure and passing through the hollow holder, and one portion of the pen core structure is exposed outside the thin pen-shaped casing structure.
Type:
Grant
Filed:
May 18, 2014
Date of Patent:
January 3, 2017
Assignee:
Wacom Co., Ltd.
Inventors:
Chien-Chia Lien, Hung-I Wang, Cheng-Lu Liu
Abstract: The present invention discloses a Gamma voltage driving circuit, which comprises a voltage dividing resistor string, which comprises 2n resistors connected in series sequentially, used to divide a reference voltage into 2n Gamma voltages; wherein, n is an integer not less than 1; a reference voltage module, which provides the reference voltage for the voltage dividing resistor string; a voltage selecting module, which is used to selectively output one of the 2n Gamma voltages.
Type:
Grant
Filed:
December 9, 2013
Date of Patent:
January 3, 2017
Assignee:
Shenzhen China Star Optoelectronics Technology, Co., Ltd
Abstract: A display device is provided. The display device includes a display panel, a backlight unit, and a luminance comparison unit. The backlight unit is configured to supply light to the display panel. The luminance comparison unit is configured to compare a measured luminance of the display panel with a reference luminance range. The backlight unit includes a light source unit, a DC-DC converter, and a driving current controller. The DC-DC converter is configured to supply a driving voltage to the light source unit, and the driving current controller is configured to control a driving current flowing to the light source unit based on the comparison result of the luminance comparison unit.
Abstract: An AMOLED driving circuit, a driving method and a display device, wherein a control unit is connected to a data line and a control line, and is connected to a driving unit via first, second and third nodes; a charging unit is connected to the driving unit via the first node, and is connected to a first power source; the driving unit is connected to one end of a light emitting device, and is connected to the first power source; the other end of the light emitting device is connected to a second power source. The control unit controls a current so as to charge the charging unit through the driving unit, and controls the charging unit so as to supply a voltage to the driving unit through the first node, so that the driving unit is driven by the voltage and drives the light emitting device to emit light.
Abstract: Disclosed is a power supply unit including a DC-DC converter including an output terminal and resistor coupling terminal and an external resistor coupled to the resistor coupling terminal, where the DC-DC converter includes a first power generation unit which outputs a predetermined current to the output terminal, and a sensing circuit unit that includes a sensing resistor located between the first power generation unit and the output terminal and stops an operation of the first power generation unit depending on a current value flowing in the sensing resistor. A power supply unit and an organic light emitting display including the power supply unit include a sensing circuit unit that stops operation of the power supply unit to prevent an additional damage when an abnormal current occurs.
Abstract: An in-cell touch display structure includes: an upper substrate, a lower substrate, a liquid crystal layer configured between the upper and lower substrates; a black matrix layer, and a thin film transistor and sensing electrode layer. The thin film transistor and sensing electrode layer includes a gate line sub-layer having a plurality of gate lines and a plurality of connection segments separated by the gate lines, and a source line sub-layer having a plurality of source lines and a plurality of sensing conductor segments separated by the source lines, wherein part of the sensing conductor segments and part of the connection segments are electrically connected together to form a plurality of sensing conductor blocks.
Abstract: A method and apparatus for detecting by a digitizer an application of an electronic pen on or within a predetermined distance from a screen of an electronic device, and includes compensating coordinates of an electronic pen relative to screen. At least one magnetic field is detected that is produced by the electronic pen and that has a different central axis each other The digitizer determines whether the electronic pen is inclined based on a number of detected magnetic fields. A determination is made whether to apply a compensation value for compensating coordinates of the electronic pen based on determining inclination of the electronic pen. The present invention advantageously permits exact recognition of coordinates of the electronic pen whether then pen is inclined or not by performing the coordinate compensation taking into account the inclination of the electronic pen and the inclined direction.
Type:
Grant
Filed:
July 2, 2013
Date of Patent:
November 15, 2016
Assignee:
Samsung Electronics Co., Ltd.
Inventors:
Je-Hyun Son, Young-Jae Ko, Min-Seok Kim, Sang-Ryul Park, Ju-Gab Lee
Abstract: The invention discloses a liquid crystal display (LCD) apparatus and a brightness/luminance holding ratio compensation method. A backlight module of the LCD apparatus may form a plurality of backlight shield-blocking periods in a display frame cycle or adjust output brightness gradually, for compensating a brightness/luminance bias caused by a transmittance variance of liquid crystal cell in the low refresh rate driving LCD apparatus, so as to avoid some abnormal display effects, such as screen flicker. Besides, the LCD apparatus has better energy efficiency by utilizing a low-voltage gray level driving method or saving the power consumption of the backlight module.
Abstract: A display device driving method is provided. The display device driving method comprises the steps outlined below. A display device is provided, in which each of the first gate lines of a driving circuit of the display device has a first RC value and each of the second gate lines of the drive circuit has a second RC value smaller than the first RC value. A first gate driving signal having a first pulse width is generated to each of the first gate lines to drive corresponding first pixel rows. A second gate driving signal having a second pulse width is generated to each of the second gate lines to drive corresponding second pixel rows, wherein the second pulse width is smaller than the first pulse width.
Abstract: The present invention discloses an optical touch panel system and a positioning method for positioning an object existing in a touch control area. The system includes: at least one reflective element disposed on a side of the touch control area; at least one light guide module disposed on a side of the touch control area adjacent to or opposite the reflective element and emitting light; an image sensor capturing an image of the object; a plurality of photo detectors arranged on a side of the touch control area adjacent to the image sensor and sensing the object to obtain shade information; and a processor calculating the coordinates of the object according to the image and the shade information.
Type:
Grant
Filed:
October 8, 2012
Date of Patent:
November 8, 2016
Assignee:
PIXART IMAGING INCORPORATION, R.O.C.
Inventors:
Chun-Shen Lin, Chun-Yi Lu, Chi-Chieh Liao, Tzung-Min Su, Ming-Tsan Kao
Abstract: According to one embodiment, a liquid crystal display device includes array substrate, counter substrate and liquid crystal layer. The array substrate includes a plurality of pixel electrodes, a plurality of gate lines, a plurality of source lines, a plurality of switching elements, a gate driver, and a source driver. The counter substrate includes a color filter. In each frame period, gradation signals of given polarity are applied to a plurality of pixel electrodes facing the transparent filter, while gradation signals of the reverse polarity are applied to a plurality of pixel electrodes facing the green filter.
Abstract: A display apparatus including a display section including an array of pixels in a two-dimensional matrix, wherein each of the pixels of the display section includes a pair of a subpixel displaying a first primary color, and a subpixel displaying a second primary color being different from the first primary color.
Abstract: A display driver integrated circuit includes a memory unit configured to store image data received from an external host, an image processing chain unit configured to perform image processing on the image data, a data driver configured to control data lines of a display panel based on the image data, and a data path selection unit configured to selectively activate, based on an operation mode of the display driver integrated circuit, one of a first data path and second data path for the image data. The first data path is formed by sequentially connecting the external host, the memory unit, the image processing chain unit and the data driver. The second data path is formed by sequentially connecting the external host, the image processing chain unit, the memory unit and the data driver.
Abstract: A liquid crystal display (LCD) panel includes a plurality of pixels, scan lines, data lines crisscrossing with the scan lines, a data driving unit that drives the data lines, an overvoltage driving unit coupled to the data driving unit, a data analysis unit coupled to the overvoltage driving unit and reading gray level of each of sub-pixels, an original overvoltage driving table, and a first overvoltage driving table. Each of the pixels belonging to a same column receives data of a same data line, and each of the pixels includes three sub-pixels controlled by three adjacent scan lines one by one. The original overvoltage driving table and the first overvoltage driving table are coupled to the data analysis unit.
Abstract: A method of reducing a time for switching a gate line driving signal of display device having plural gate lines from a level that is less than a full gate-on level to the gate-on level is disclosed. The method may include: during a gate line pre-charging period of a respective gate line, causing the gate line driving signal to be at the full gate-on level; during a corresponding gate line main-charging period that follows the pre-charging period, causing the gate line driving signal of to be at the full gate-on level; and during an interposed period that is interposed between the gate line pre-charging period and its corresponding gate line main-charging period, causing the gate line driving signal to be at an intermediate level that is between the full gate-on level and an opposed gate-off level.
Type:
Grant
Filed:
January 22, 2014
Date of Patent:
September 20, 2016
Assignee:
Samsung Display Co., Ltd.
Inventors:
Ki Hyun Pyun, Yun Mi Kim, Min Young Park, Sung-Jun Kim, Ju Hyun Kim, Yong Jae Lee, Kyung-Hwa Lim
Abstract: A current drive circuit capable of reducing the influence of temperature variation or individual deviation is provided. An output transistor is a PNP bipolar transistor, and has an emitter connected to a cathode of an LED string. A current control resistor is disposed between a collector of the output transistor and a ground terminal. An output terminal of an error amplifier is connected to a base of the output transistor, a first input terminal of the error amplifier is connected to a connection point of the output transistor and the current control resistor, and a reference voltage is applied to a second input terminal of the error amplifier. The error amplifier enables a sink current sunk from the output terminal to flow to the current control resistor.