Patents Examined by Christina Ildebrando
  • Patent number: 7037877
    Abstract: The present invention provides a process for the preparation of an improved copper chromite catalyst for the hydrogenation of diethyl maleate to tetrahydrofuran with very high selectivity. This invention particularly relates to a process for the preparation of an improved copper chromite catalyst with specific composition and physical properties containing copper, chromium, zinc and aluminium as catalyst components in order to achieve selective production of tetrahydrofuran via single step hydrogenation of diethyl maleate. The calcination procedure has also been described to achieve the best activity. The catalyst has a life of more than 630 hours with constant activity. The used catalyst can also be regenerated to match the original hydrogenation activity.
    Type: Grant
    Filed: February 24, 1999
    Date of Patent: May 2, 2006
    Assignee: Council of Scientific and Industrial Research
    Inventors: Raghunath Vitthal Chaudhari, Rengaswamy Jaganathan, Sopan Tukaram Chaudhari, Chandrashekhar Vasant Rode
  • Patent number: 7033968
    Abstract: A process is described for the manufacture of a crystalline molecular sieve layer on a support, which process comprises impregnation of the support with an impregnating material prior to deposition of a crystalline molecular sieve layer and subsequent removal of substantially all the impregnating material.
    Type: Grant
    Filed: March 10, 2000
    Date of Patent: April 25, 2006
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Antonie Jan Bons, Marc H. Anthonis
  • Patent number: 6924247
    Abstract: The object of the present invention relates to a simple, rapid and inexpensive process for effecting solid-liquid separations in the case of zeolites, also having small crystals. This process, which is particularly useful for the recovery of zeolite crystals in suspension in the crystallization water, comprises treating this suspension of crystals with an acid or one of its precursors and subjecting the resulting mixture to filtration or decanting. According to a particular aspect of the invention, the crystalline phase is separated in a mixture with oxides which can be used as ligands. Said oxides can be generated by the reagents of the zeolite preparation reagent mixture, not transformed into crystalline phase during the synthesis hydrothermal treatment, or they can be added to the suspension of crystals before the separation treatment, or again they can be generated by precursors suitably added to the crystallization slurry.
    Type: Grant
    Filed: December 14, 2001
    Date of Patent: August 2, 2005
    Assignees: Eni S.p.A., Enichem S.p.A., Enitecnologie S.p.A.
    Inventors: Angela Carati, Giannino Pazzuconi, Carlo Perego, Oscar Cappellazzo, Gianni Girotti
  • Patent number: 6887446
    Abstract: A catalyst for removing hydrocarbons from exhaust gas containing methane and an excess of oxygen, which comprises palladium or palladium/platinum supported on at least one carrier selected from zirconia, sulfated zirconia and tungsten-zirconia, and a method for treating exhaust gas using the catalyst.
    Type: Grant
    Filed: June 12, 2003
    Date of Patent: May 3, 2005
    Assignee: Osaka Gas Company Limited
    Inventors: Hirofumi Ohtsuka, Takeshi Tabata, Takatoshi Nakahira, Masataka Masuda, Takenori Hirano
  • Patent number: 6884743
    Abstract: The present invention relates to the manufacture of solid materials or shaped bodies containing at least one zeolite and being at least partly crystalline. Furthermore, the present invention relates to the solid materials or shaped bodies as such and to the use of these materials for reactions of compounds having at least one C—C double bond with at least one hydroperoxide. Specifically, the present invention relates to a process for the manufacture of a solid material containing at least one zeolite and being at least partly crystalline, wherein the synthesis of the said solid material involves at least one partial step of contacting at least one transition metal oxide source with at least one epoxide or hydrolysate thereof prior to or during the at least partial crystallization of said solid material.
    Type: Grant
    Filed: September 16, 2002
    Date of Patent: April 26, 2005
    Assignee: BASF Aktiengesellschaft
    Inventors: Ulrich Müller, Georg Krug, Peter Bassler, Hans-Georg Göbbel, Peter Rudolf, Joaquim Henrique Teles
  • Patent number: 6878657
    Abstract: This invention relates to the use of pore mouth control of zeolite NaA for developing a novel molecular sieve adsorbents and their potential in the separation and purification of gaseous mixtures by the size/shape selective adsorption. More specifically,the invention relates to the manufacture and use of a molecular sieve adsorbent, which is selective towards oxygen from its gaseous mixture with nitrogen and argon by pore mouth control of zeolite NaA with liquid phase alkoxide deposition on the external surface at ambient conditions of temperature and pressure. Thus prepared adsorbent is useful for the separation and purification of nitrogen and argon from its mixture with oxygen.
    Type: Grant
    Filed: March 31, 2003
    Date of Patent: April 12, 2005
    Assignee: Council of Scientific & Industrial Research
    Inventors: Raksh Vir Jasra, Chintansinh Dharmendrasinh Chudasama, Jince Sebastian
  • Patent number: 6872680
    Abstract: The invention relates to a molecular sieve catalyst composition, to a method of making or forming the molecular sieve catalyst composition, and to a conversion process using the catalyst composition. In particular, the invention is directed to a making a molecular sieve catalyst composition by forming a slurry by combining a molecular sieve, a binder and a matrix material, wherein the slurry has a pH, above or below the isoelectric point of the molecular sieve. The catalyst composition has improved attrition resistance, particularly useful in a conversion process for producing olefin(s), preferably ethylene and/or propylene, from a feedstock, preferably an oxygenate containing feedstock.
    Type: Grant
    Filed: June 24, 2002
    Date of Patent: March 29, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Yun-feng Chang, Stephen N. Vaughn, Luc R. M. Martens, Joseph E. Baumgartner, Stuart L. Soled, Kenneth R. Clem
  • Patent number: 6867340
    Abstract: A catalyst for the disproportionation/transalkylation of various hydrocarbons consists of a carrier and a metal component supported on the carrier. The carrier comprises 10 to 80 wt % of mordenite and/or beta type zeolite with a mole ratio of silica/alumina ranging from 10 to 200; 0 to 70 wt % of ZSM-5 type zeolite with a mole ratio of silica/alumina ranging from 30 to 500; and 5 to 90 wt % of at least one inorganic binder selected from the group consisting of gamma-alumina, silica, silica alumina, bentonite, kaolin, clinoptilolite, and montmorillonite. The metal component comprises platinum and either tin or lead. The catalyst enables mixed xylenes to be produced at remarkably high yields from benzene, toluene and C9 or higher aromatic compounds through disproportionation/transalkylation with a great reduction in aromatic loss. In addition, the catalyst can maintain its catalytic activity for a long period of time without deactivation.
    Type: Grant
    Filed: October 10, 2002
    Date of Patent: March 15, 2005
    Assignee: SK Corporation
    Inventors: Seung-Hoon Oh, Sang-Il Lee, Kyoung-Hak Seong, Sang-Hoon Park
  • Patent number: 6864200
    Abstract: A repeated “soak and dry” selectivation process for preparing a modified metallosilicate catalyst composite is disclosed comprising of a mixture of amorphous silica, alumina and a pore size controlled metallosilicate useful for alkylaromatic conversion. The process comprises (a) contacting an intermediate pore metallosilicate with an organosilicon compound in a solvent for a specific duration and then recovering the solvent, (b) combining the organosilicon compound treated metallosilicate with water and then drying the catalyst, (c), repeating the steps a) and b) above and (d) calcining the catalyst in an oxygen containing atmosphere sufficient to remove the organic material and deposit siliceous matter on the metallosilicate. In a another embodiment, when the organosilicon compound is water soluble, step (b) may be avoided.
    Type: Grant
    Filed: August 23, 2001
    Date of Patent: March 8, 2005
    Assignee: Indian Petrochemicals Corporation Limited
    Inventors: Jagannath Das, Anand Bhimrao Halgeri
  • Patent number: 6864202
    Abstract: The present invention relates to an improved process for obtaining sodium silicate alkali solution depleted of sodium salt and enriched in silica from a mother liquor recovered after isolation of molecular sieves and more particularly, the present invention relates to a process for recycling mother liquor obtained after the isolation of molecular sieves for the preparation of fresh molecular sieves or as a binder for producing Fluid Catalytic Cracking (FCC) catalyst.
    Type: Grant
    Filed: October 29, 2002
    Date of Patent: March 8, 2005
    Assignee: Indian Oil Corporation Limited
    Inventors: Biswanath Sarkar, Ram Mohan Thakur, Nagesh Samant, Mohan Kuvettu Prabhu, Ravichandran Gopal, Mitra Bhanu Patel, Sanjay Kumar Ray, Krishnan Venkatachalam, Satish Makhija, Sobhan Ghosh
  • Patent number: 6864203
    Abstract: A process is provided for the alkylation, transalkylation, or isomerization of aromatic hydrocarbons. The processes comprises contacting aromatic hydrocarbons under conversion conditions with a zeolite bound zeolite catalyst. The zeolite bound zeolite catalyst comprises first crystals of a first large pore zeolite which are bound together by second crystals of a second zeolite.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: March 8, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Dan Eldon Hendriksen, Gary David Mohr, Johannes Petrus Verduijn, Robert Scott Smith
  • Patent number: 6858129
    Abstract: There is provided a zeolite bound zeolite catalyst which does not contain significant amount of non-zeolitic binder and can be tailored to optimize its performance and a process for converting hydrocarbons utilizing the zeolite bound zeolite catalyst. The zeolite bound zeolite catalyst comprises core crystals containing first crystals of a first zeolite and optionally second crystals of a second zeolite having a composition, structure type, or both that is different from said first zeolite and binder crystals containing third crystals of a third zeolite and optionally fourth crystals of a fourth zeolite having a composition, structure type, or both that is different from said third zeolite. If the core crystals do not contain the second crystals of the second zeolite, then the binder crystals must contain the fourth crystals of the fourth zeolite. The zeolite bound zeolite finds application in hydrocarbon conversion processes, e.g.
    Type: Grant
    Filed: August 6, 2003
    Date of Patent: February 22, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Gary David Mohr, Kenneth Ray Clem, Wilfried Jozef Mortier, Machteld Maria Mertens, Xiaobing Feng, Marc H. Anthonis, Bart Schoofs
  • Patent number: 6858556
    Abstract: A process for the preparation of a stabilized dual zeolite catalyst-comprising two types of zeolites, a low silica molecular sieve and a stabilized high silica zeolite is disclosed. The catalyst is useful for cracking heavier hydrocarbons into lighter useful products.
    Type: Grant
    Filed: February 25, 2002
    Date of Patent: February 22, 2005
    Assignee: Indian Oil Corporation Limited
    Inventors: Mohan Prabhu Kuvettu, Sanjay Kumar Ray, Gopal Ravichandran, Venkatchalam Krishnan, Satyen Kumar Das, Satish Makhija, Sobhan Ghosh
  • Patent number: 6858193
    Abstract: The invention relates to a catalyst for lowering the amount of NOx in the lean exhaust gas from lean burn engines, comprising active aluminum oxide, magnesium oxide and at least one noble metal of the platinum group of the periodic table of the elements, as well as at least one nitrogen oxide storage material. The catalyst is characterized in that the magnesium oxide forms a homogeneous mixed oxide with aluminum oxide and is present in a concentration of about 1 to about 40 wt.-%, based on the total weight of the mixed oxide.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: February 22, 2005
    Assignee: Umicore AG & Co. KG
    Inventors: Lutz Marc Ruwisch, Ulrich Göbel, Juliane Theis, Rainer Domesle
  • Patent number: 6852666
    Abstract: A composition for purifying exhaust gases of an internal combustion engine capable of consuming fuel with lean air-fuel ratios includes elements adsorbing the NOx present in the exhaust gases, in the presence of excess oxygen and releasing the adsorbed NOx when the oxygen concentration of the exhaust gases decreases. The NOx adsorbing element includes in combination: a first composition comprising a support and an active phase, the active phase being based on manganese and at least another element A selected among, alkalines and alkaline-earths, the manganese and element A being chemically bound; a second composition including a support and an active phase based on manganese and at least another element B selected among alkalines, alkaline-earths and rare earths, the second composition having or being capable of having a specific surface area of at least 80 m2/g after being calcined at 800° C., and furthermore, a reducing and/or three-way catalyst function is incorporated in the NOx adsorbing element.
    Type: Grant
    Filed: May 4, 2000
    Date of Patent: February 8, 2005
    Assignees: Faurecia Systemes d'Echappement, Rhodia Chimie, Renault
    Inventors: Christophe Bouly, Thierry Pontier, Christian Sarda, Christian Bert, Marc Guyon, Najat Moral, Thierry Birchem, Catherine Hedouin, Thierry Seguelong
  • Patent number: 6849568
    Abstract: A hydrophilic coating can be optionally corrosion resistant and/or microbial resistant for a substrate such as a heat exchanger. The coating is provided by a zeolite layer that can be formed from a synthesis solution comprising a structure directing agent, a base, a silicon source, an aluminum source, and a solvent. In one preferred embodiment, the synthesis solution comprises tetrapropylammonium hydroxide, sodium hydroxide, aluminum oxide, tetraethylorthosilicate, and water. The layer is characterized by a zeolite MFI structure and by a composition having the formula of Mn/m[AlnSi(96-n)O192], or [AlnSi(96-n)O192].4[(CH3CH2CH2)4N—OH] wherein M is a metal ion of valence m+ (e.g., Na+) and 27>n>=0. After formation of the coating, the organic structure directing agent can be left intact inside the zeolite coating to make the coating corrosion resistant.
    Type: Grant
    Filed: December 12, 2002
    Date of Patent: February 1, 2005
    Assignee: Honeywell International Inc.
    Inventor: Yushan Yan
  • Patent number: 6838586
    Abstract: The invention is directed to a method for making a silicoaluminophosphate (SAPO) molecular sieve from a reaction mixture comprising components present in amounts sufficient to form the SAPO, the reaction mixture having a first pH. The method comprises the steps of: adding an acid to the reaction mixture after the reaction mixture undergoes a change in pH from the first pH; and crystallizing the SAPO from the reaction mixture. The present invention is also directed to a silicoaluminophosphate molecular sieve made by this process.
    Type: Grant
    Filed: December 31, 2002
    Date of Patent: January 4, 2005
    Assignee: Exxon Mobil Chemical Patents Inc.
    Inventors: Machteld M. Mertens, Brita Engels, Ronald G. Searle, Grigore Pop, Irina Rodica Tamas, Rodica Ganea, Ruxandra Birjega
  • Patent number: 6838570
    Abstract: A titanium-containing silicon oxide molded catalyst satisfying all of the following conditions (1) to (4): (1) an average pore diameter is 10 ? or more, (2) 90% or more of the whole pore volume have pore diameters of 5 to 200 ?, (3) a specific pore volume is 0.2 cm3/g or more, and (4) it is obtained by using as a template a quaternary ammonium ion of the following general formula (I) or an amine of the following general formula (II), then, removing the template. [NR1R2R3R4]+??(I) (in the formula (I), R1 represents a linear or branched hydrocarbon group having 2 to 36 carbon atoms, and R2 to R4 represent an alkyl group having 1 to 6 carbon atoms.) NR5R6R7??(II) (in the formula (II), R5 represents a linear or branched hydrocarbon group having 2 to 36 carbon atoms, and R6 and R7 represent hydrogen or an alkyl group having 1 to 6 carbon atoms.).
    Type: Grant
    Filed: January 29, 2001
    Date of Patent: January 4, 2005
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Jun Yamamoto, Junpei Tsuji
  • Patent number: 6838406
    Abstract: The present invention relates to a process for the preparation of zeolitic catalysts of the MFI type in spheroidal form. The process consists in emulsifying and consolidating in paraffinic hydrocarbons, in the presence of a non-ionic surface-active agent or a suitable combination of a non-ionic surface-active agent and a cationic surface-active agent, a dispersion of particles of zeolitic material of the MFI type in a silica sol.
    Type: Grant
    Filed: November 18, 2002
    Date of Patent: January 4, 2005
    Assignee: Polimeri Europa S.p.A.
    Inventors: Luigi Balducci, Leonardo Dalloro, Alberto Cesana, Roberto Buzzoni
  • Patent number: 6812180
    Abstract: A method for preparing a catalyst is herein disclosed which comprises the steps of impregnating a carrier with active components, particularly a platinum-containing compound and one or more halogen-containing compounds, drying the impregnated carrier, and then calcining the same, said drying treatment being carried out while the impregnated carrier is in a drifting condition. According to the above method, an activity of the catalyst can be improved, and a cracking selectivity can be reduced.
    Type: Grant
    Filed: February 19, 2002
    Date of Patent: November 2, 2004
    Assignees: Idemitsu Kosan Co., Ltd., Chevron Phillips Chemical Company, LP
    Inventor: Tetsuya Fukunaga