Patents Examined by Chu Chuan Liu
  • Patent number: 10709365
    Abstract: A method for noninvasive analysis of subcutaneous tissue includes irradiating a surface of the tissue with short wave infrared (SWIR) radiation in a first spectral band that is strongly absorbed by water, and with SWIR radiation in a second spectral band such that an interaction of the radiation in both spectral bands with a component of the tissue other than water is substantially identical. An intensity of the radiation in each of the spectral bands that emerges from the tissue is measured. A relative absorption by the tissue of radiation in one of spectral bands relative to absorption by the tissue of radiation in the other of the spectral bands is calculated. A state of the tissue is determined in accordance with the calculated relative absorption.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: July 14, 2020
    Assignee: I. R. Med Ltd.
    Inventors: Yaniv Cohen, Ronnie Klein, Arkadi Zilberman, Ben Zion Dekel, Nathan Blaunstein
  • Patent number: 10709367
    Abstract: An oximeter measures oxygen saturation for two or more different tissue depths and shows these results on a screen. A probe of the oximeter has multiple different distances between source and detector sensors. One probe implementation has fixed sensor positions. Other implementations include sensors on a moveable platform or openings to accept sensors, which allow a user to vary a distance between sensors.
    Type: Grant
    Filed: January 20, 2015
    Date of Patent: July 14, 2020
    Assignee: ViOptix, Inc.
    Inventors: Larry C. Heaton, II, Robert E. Lash, Jimmy Jian-min Mao
  • Patent number: 10709366
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: July 14, 2020
    Assignee: Masimo Corporation
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen
  • Patent number: 10702194
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: July 7, 2020
    Assignee: Masimo Corporation
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen
  • Patent number: 10702195
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: July 7, 2020
    Assignee: Masimo Corporation
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen
  • Patent number: 10702196
    Abstract: A pulse photometer includes a light emitter, a light detector, a first signal separator that separates a first signal component and a first noise component, a second signal separator that separates a second signal component and a second noise component, a first determining section, a second determining section, and a concentration calculating section that calculates a concentration of a light absorption material in blood of the subject based on a fundamental frequency of the first signal component or a fundamental frequency of the second signal component.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: July 7, 2020
    Assignee: NIHON KOHDEN CORPORATION
    Inventors: Yoshinori Ueda, Teiji Ukawa, Kazumasa Ito, Hideki Fujisaki
  • Patent number: 10667690
    Abstract: A photoplethysmogram (PPG) measurement includes the use of compressive sensing based on samples generated in accordance with a fixed pattern. A pulse oximeter circuit can drive an LED according to the fixed pattern to create a compressive sensing sample matrix of sparse measurements. The fixed pattern can be a binary progression. The PPG signal reconstruction can include zero padding the sample matrix.
    Type: Grant
    Filed: April 2, 2016
    Date of Patent: June 2, 2020
    Assignee: Intel Corporation
    Inventors: Venkat Natarajan, Deeksha Dadhich, Kumar Ranganathan
  • Patent number: 10653348
    Abstract: A method including placing a portion of a foot of a newborn in a device, the device including a light emitter and a corresponding receiver coupled on opposite sides of the device, the device further including a processor for processing data from the light emitter and receiver; and determining a presence of congenital heart disease. An apparatus including a body including a chamber of a size to accommodate a portion of a newborn's foot; at least one light emitter and a corresponding detector coupled on opposite sides of the body, the emitter configured to emit light of a prescribed wavelength into the chamber; and a processor coupled to the body and configured to receive a signal from the at least one detector.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: May 19, 2020
    Assignee: LOS ANGELES BIOMEDICAL RESEARCH INSTITUTE AT HARBOR-UCLA MEDICAL CENTER
    Inventors: Ruey-Kang Chang, Yann Ping Pan
  • Patent number: 10646155
    Abstract: The invention provides a method of generating an adaptive partial report for an observer with an apparatus comprising a display, a user interface, and a processor. The apparatus can be a computer system or an electronic device, for example. The method includes the processor characterizing an iconic memory decay function for the observer. The characterization includes determining a prior for a plurality of parameters. The method further includes the processor determining a first stimulus for a first trial based on the prior for the plurality of parameters, the display generating the stimulus for viewing by the observer, the user interface receiving input for the first trial and in response to the stimulus, the processor revising respective parameter values for the parameters based on the received input, and the processor determining a new stimulus for a next trial based on the revised parameter values.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: May 12, 2020
    Assignees: OHIO STATE INNOVATIVE FOUNDATION, ADAPTIVE SENSORY TECHNOLOGY
    Inventors: Zhong-Lin Lu, Jongsoo Baek, Luis A. Lesmes
  • Patent number: 10638928
    Abstract: Provided is a measurement probe of which hygiene can be easily secured. The measurement probe (1) receives fluorescence emitted by radiation of excitation light to a fingertip (90). The measurement probe (1) includes: a radiating portion that radiates the excitation light; a light-receiving portion that receives the fluorescence; a sleeve (16) disposed at a front end portion of the radiating portion or the light-receiving portion; and a transparent quartz plate (15) disposed at a front end surface (14I) of the radiating portion or the light-receiving portion. The sleeve (16) is provided with an opening in which the quartz plate (15) is detachably mounted.
    Type: Grant
    Filed: May 18, 2015
    Date of Patent: May 5, 2020
    Assignee: Sharp Life Science Corporation
    Inventor: Mikihiro Yamanaka
  • Patent number: 10638972
    Abstract: Systems and methods of identifying medical disorders in one or more subjects are disclosed herein. In one embodiment, sound is transmitted toward a subject and at least a portion of the sound reflected by the subject and is acquired as echo data. The acquired echo data is used to generate a motion waveform having a plurality of peaks detected therein. At feast a portion of the plurality of peaks may be indicative of movement of the subject. One or more medical disorders in the subject can be identified based on, for example, time durations and/or amplitude changes between peaks detected in the motion waveform.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: May 5, 2020
    Assignee: University of Washington
    Inventors: Shyamnath Gollakota, Rajalakshmi Nandakumar, Nathaniel F. Watson
  • Patent number: 10631765
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: April 28, 2020
    Assignee: Masimo Corporation
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen
  • Patent number: 10631742
    Abstract: A method, a computer readable media and a hand-held device, the hand-held device may include a first sensor that is positioned such as to be contacted by a first hand of a user when the user holds the hand-held device; a second sensor that is positioned such as to be contacted by a second hand of the user when the user holds the hand-held device; wherein at least one sensor of the first sensor and the second sensor is a hybrid sensor that comprises an electrode, an illumination element and a light detector; and a health monitoring module arranged to process detections signals from the electrode and from the light detector such as to provide processed signals that are indicative of a state of the user.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: April 28, 2020
    Assignee: BRAEMAR MANUFACTURING, LLC
    Inventors: Benny Tal, Yair Tal, Assaf Pressman
  • Patent number: 10631763
    Abstract: A method for non-invasive glucose monitoring includes the following steps. At least one ray of light is emitted from at least one light source. The light emitted from the light source is leaded into an eyeball and focused on the eyeball through a first beam splitter. The reflected light reflected from the eyeball is transmitted through the first beam splitter to a set of photo detectors. Optical angular information and energy information of the reflected light transmitted to the set of photo detectors are measured. Optical angular difference and energy difference resulting from the light emitted from the light source and the reflected light transmitted to the set of photo detectors are obtained. Glucose information is obtained by analyzing the optical angular difference and the energy difference. Since glucose information has a corresponding relationship with blood glucose information, blood glucose information may be obtained.
    Type: Grant
    Filed: July 16, 2017
    Date of Patent: April 28, 2020
    Assignee: Taiwan Biophotonic Corporation
    Inventors: Yu-Tang Li, Chang-Sheng Chu, Pei-Fang Tsou, Pei-Cheng Ho, Kuan-Jui Ho
  • Patent number: 10624543
    Abstract: A photo-acoustic sensing apparatus (100) for non-invasive measurement of blood parameters of a subject (102) comprises a photo-acoustic sensor (104) for sensing photo-acoustic signals (106) induced when a region of the subject is illuminated by a light source (108). A first sensor processing module (112) may derive blood oxygen saturation using sensed photo-acoustic signals (114). A second sensor processing module (116) may derive blood core temperature using sensed photo-acoustic signals. A third sensor processing module (118) may derive blood glucose using sensed photo-acoustic signals. The sensing apparatus is configured to derive at least one of: a de-correlated value (120) of blood oxygen saturation of the subject; a de-correlated value (122) of blood core temperature of the subject; and a de-correlated value (124) of blood glucose of the subject.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: April 21, 2020
    Assignee: Nanyang Technological University
    Inventors: Yuanjin Zheng, Xiaohua Feng, Fei Gao
  • Patent number: 10624563
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: April 21, 2020
    Assignee: Masimo Corporation
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen
  • Patent number: 10624542
    Abstract: Some embodiments relate to a device, method, and/or computer-readable medium storing processor-executable process steps to remove a component of a signal corresponding to ambient light in a photoplethysmographic sensor device, including capturing a first detected light signal representing an ambient light at a first time, causing a light emitter to generate a source light signal driven at a first level, capturing a second detected light signal representing the source light signal after interacting with a user's tissue plus the first detected light signal, generating a first output signal based on the second detected light signal adjusted by the first detected light signal, causing the light emitter to generate a source light signal driven at a second level, capturing a third detected light signal representing the source light signal driven at the second level after interacting with the user's skin plus the first detected light signal, and generating a second output signal based on the third detected light sig
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: April 21, 2020
    Assignee: Fitbit, Inc.
    Inventor: Peter W. Richards
  • Patent number: 10624564
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: April 21, 2020
    Assignee: Masimo Corporation
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen
  • Patent number: 10627861
    Abstract: This is a wearable biometric device for an arm including spectroscopic sensors which project light onto an arm surface at different angles. Data from these sensors can be used to measure a person's hydration levels, oxygen levels, glucose levels, or heart rate.
    Type: Grant
    Filed: October 16, 2016
    Date of Patent: April 21, 2020
    Assignee: Medibotics
    Inventor: Robert A. Connor
  • Patent number: 10617297
    Abstract: In some embodiments, an electronic device for monitoring EEG data, may include one or more of the following features: (a) a housing, (b) a processor disposed within the housing, (c) at least one sensor operatively connected to the processor, (d) at least two EEG electrodes operatively connected to the processor and positioned on the housing for receiving EEG signals from an ear surface, and (e) a plurality of EEG electrodes, wherein the processor measures the impedance of the plurality of EEG electrodes.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: April 14, 2020
    Assignee: BRAGI GmbH
    Inventor: Jake Berry Turner