Patents Examined by Chuong A Luu
  • Patent number: 11784232
    Abstract: A gate opening, a plurality of first openings arranged in a gate widthwise direction and having a reed shape, a second opening connecting the adjacent first openings, and a third opening connected to a side away from the arrangement of the first opening at an end of the arrangement are formed in an insulation layer. An ohmic cap layer is etched via the openings to form an asymmetric recess region.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: October 10, 2023
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Takuya Tsutsumi, Hideaki Matsuzaki
  • Patent number: 11784111
    Abstract: A semiconductor device and a method for manufacturing the same are provided. The semiconductor device includes a semiconductor substrate, at least one conductive via, a second insulation layer and a conductive layer. The conductive via is disposed in the semiconductor substrate and includes an interconnection metal and a first insulation layer around the interconnection metal. A portion of the first insulation layer defines an opening to expose the interconnection metal. The second insulation layer is disposed on a surface of the semiconductor substrate and in the opening. The conductive layer is electrically disconnected with the semiconductor substrate by the second insulation layer and electrically connected to the interconnection metal of the at least one conductive via.
    Type: Grant
    Filed: May 28, 2021
    Date of Patent: October 10, 2023
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Cheng-Yuan Kung, Hung-Yi Lin, Chin-Cheng Kuo, Wu Chou Hsu
  • Patent number: 11785784
    Abstract: The present invention is directed to a perpendicular magnetic structure including a seed layer structure that includes a first seed layer comprising a metal element and oxygen, and a second seed layer formed on top of the first seed layer and comprising chromium. The metal element is one of titanium, tantalum, or magnesium. The perpendicular magnetic structure further includes a magnetic fixed layer structure formed on top of the seed layer structure and having an invariable magnetization direction substantially perpendicular to a layer plane of the magnetic fixed layer structure. The magnetic fixed layer structure includes layers of a magnetic material interleaved with layers of a transition metal. The magnetic material includes cobalt. The transition metal is one of nickel, platinum, palladium, or iridium.
    Type: Grant
    Filed: May 24, 2022
    Date of Patent: October 10, 2023
    Assignee: Avalanche Technology, Inc.
    Inventors: Zihui Wang, Yiming Huai
  • Patent number: 11785763
    Abstract: A semiconductor device includes a substrate including a cell area having a first active region and a peripheral circuit area having a second active region, a direct contact contacting the first active region in the cell area, a bit line structure disposed on the direct contact, a capacitor structure electrically connected to the first active region, a gate structure disposed on the second active region in the peripheral circuit area, lower wiring layers disposed adjacent to the gate structure and electrically connected to the second active region, upper wiring layers disposed on the lower wiring layers, a wiring insulating layer disposed between the lower wiring layers and the upper wiring layers, and upper contact plugs connected to at least one of the lower wiring layers and the upper wiring layers and extending through the wiring insulating layer.
    Type: Grant
    Filed: January 4, 2022
    Date of Patent: October 10, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Wooyoung Choi, Juseong Oh, Yoosang Hwang
  • Patent number: 11769716
    Abstract: A semiconductor device and method of forming the same are provided. The semiconductor device includes at least one substrate and an interconnection structure. The at least one substrate has a cavity partially defined by an inner sidewall of the at least one substrate and a channel disposed at a bottom of the at least one substrate. The channel laterally penetrates through the at least one substrate. The interconnections structure is disposed over the substrate, and the interconnection structure has a through hole penetrating through the interconnection structure. The through hole, the cavity and the channel are in spatial communication with each other.
    Type: Grant
    Filed: March 25, 2021
    Date of Patent: September 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yung-Sheng Lin, Cheng-Lung Yang, Chin-Yu Ku, Ming-Da Cheng, Wen-Hsiung Lu, Tang-Wei Huang, Fu Wei Liu
  • Patent number: 11769817
    Abstract: A semiconductor structure includes a substrate, a semiconductor fin connected to the substrate, an epitaxial layer disposed over the semiconductor fin, and a silicide feature over and in contact with the epitaxial layer. The epitaxial layer including silicon germanium and further includes gallium in an upper portion of the epitaxial layer that is in contact with the silicide feature.
    Type: Grant
    Filed: May 11, 2020
    Date of Patent: September 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shahaji B. More, Chun Hsiung Tsai, Shih-Chieh Chang, Kuo-Feng Yu, Cheng-Yi Peng
  • Patent number: 11769711
    Abstract: A semiconductor device may include a via hole, a first electrode, a second electrode and a first protecting insulation layer. The via hole may be formed to penetrate a substrate. The first electrode may include an electrode segment formed on a surface of the via hole. The second electrode may be formed on the first electrode along the surface of the via hole. The second electrode may include two ends that are positioned below a surface of the substrate. The first protecting insulation layer may be formed on the second electrode along the surface of the via hole. The first protecting insulation layer may include both ends that upwardly protrude from the both ends of the second electrode.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: September 26, 2023
    Assignee: SK HYNIX INC.
    Inventors: Jung Yong Chae, Jin Hee Cho
  • Patent number: 11764147
    Abstract: Methods and apparatuses for slit oxide and via formation techniques are described, for example, for fabricating three dimensional memory devices that may include multiple decks of memory cells that each include memory cell stacks and associated access lines. The techniques may create an interconnect region without removing a portion of the memory cell stacks. The interconnect region may include one or more conductive vias extending through the decks of memory cells to couple the access lines with logic circuitry that may be located underneath the decks of memory cells. Further, the techniques may divide an array of memory cells into multiple subarrays of memory cells by forming trenches, which may sever the access lines. In some cases, each subarray of memory cells may be electrically isolated from other subarrays of memory cells. The techniques may reduce a total number of fabrication process steps.
    Type: Grant
    Filed: September 29, 2021
    Date of Patent: September 19, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Hongqi Li, Kaushik Varma Sagi, Manzar Siddik
  • Patent number: 11764145
    Abstract: A wiring structure includes a filling metal, a cover metal including cobalt (Co) on the filling metal, the cover metal having a first portion along a side surface and along a lower surface of the filling metal, and a second portion along an upper surface of the filling metal, a barrier metal on an outer surface of the first portion of the cover metal, and a capping metal on an outer surface of the second portion of the cover metal, the capping metal including a cobalt (Co) alloy, wherein the filling metal has higher conductivity than the cover metal and the barrier metal.
    Type: Grant
    Filed: April 6, 2021
    Date of Patent: September 19, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jaejin Lee, Hana Kim, Jaewha Park, Dongchan Lim
  • Patent number: 11757015
    Abstract: A semiconductor device including a substrate; a gate structure on the substrate; a gate spacer on a sidewall of the gate structure; and a polishing stop pattern on the gate structure and the gate spacer, the polishing stop pattern including a first portion covering an upper surface of the gate structure and an upper surface of the gate spacer; and a second portion extending from the first portion in a vertical direction substantially perpendicular to an upper surface of the substrate, wherein an upper surface of a central portion of the first portion of the polishing stop pattern is higher than an upper surface of an edge portion of the first portion thereof, and the upper surface of the central portion of the first portion of the polishing stop pattern is substantially coplanar with an upper surface of the second portion thereof.
    Type: Grant
    Filed: March 9, 2021
    Date of Patent: September 12, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Seunghoon Choi, Ilyoung Yoon, Ilsu Park, Kiho Bae, Boun Yoon, Yooyong Lee
  • Patent number: 11757033
    Abstract: A wide band gap semiconductor device includes a semiconductor layer, a trench formed in the semiconductor layer, first, second, and third regions having particular conductivity types and defining sides of the trench, and a first electrode embedded inside an insulating film in the trench. The second region integrally includes a first portion arranged closer to a first surface of the semiconductor layer than to a bottom surface of the trench, and a second portion projecting from the first portion toward a second surface of the semiconductor layer to a depth below a bottom surface of the trench. The second portion of the second region defines a boundary surface with the third region, the boundary region being at an incline with respect to the first surface of the semiconductor layer.
    Type: Grant
    Filed: October 24, 2022
    Date of Patent: September 12, 2023
    Assignee: ROHM CO., LTD.
    Inventor: Kengo Omori
  • Patent number: 11756844
    Abstract: A semiconductor device includes a substrate; a die attached over the substrate; and a metal enclosure continuously encircling a space and extending vertically between the substrate and the die.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: September 12, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Wei Zhou, Bret K. Street, Mark E. Tuttle
  • Patent number: 11742444
    Abstract: A photovoltaic laminate is disclosed. Embodiments include placing a first encapsulant on a substantially transparent layer that includes a front side of a photovoltaic laminate. Embodiments also include placing a first solar cell on the first encapsulant. Embodiments include placing a metal foil on the first solar cell, where the metal foil uniformly contacts a back side of the first solar cell. Embodiments include forming a metal bond that couples the metal foil to the first solar cell. In some embodiments, forming the metal bond includes forming a metal contact region using a laser source, wherein the formed metal contact region electrically couples the metal foil to the first solar cell. Embodiments can also include placing a backing material on the metal foil. Embodiments can further include forming a back layer on the backing material layer and curing the substantially transparent layer, first encapsulant, first solar cell, metal foil, backing material and back layer to form a photovoltaic laminate.
    Type: Grant
    Filed: April 14, 2021
    Date of Patent: August 29, 2023
    Assignee: MAXEON SOLAR PTE. LTD.
    Inventor: Gabriel Harley
  • Patent number: 11735638
    Abstract: A thin film transistor array substrate and an electronic device including the thin film transistor array are disclosed. The thin film transistor comprises a substrate, a first active layer on the substrate, a gate electrode on the first active layer, a second active layer on the gate electrode such that the gate electrode is between the first active layer and the second active layer. The gate electrode is configured to drive the first active layer and the second active layer. Thereby, it is possible to provide the thin film transistor array substrate including one or more thin film transistors having high current characteristics in a small area, and the electronic device including the thin film transistor array substrate.
    Type: Grant
    Filed: October 19, 2021
    Date of Patent: August 22, 2023
    Assignee: LG Display Co., Ltd.
    Inventors: Dohyung Lee, JuHeyuck Baeck, ChanYong Jeong
  • Patent number: 11735657
    Abstract: A method for fabricating a transistor includes providing a substrate, having a gate region and a first trench in the substrate at a first side of the gate region; forming a first gate insulating layer, disposed on a first portion of the gate region, opposite to the first trench; forming a second gate insulating layer, disposed on a second portion of the gate region and a first portion of the first trench abutting to the gate region, wherein the second gate insulating layer is thicker than the first gate insulating layer; forming a gate layer, disposed on the first and second gate insulating layers, having a downward protruding portion corresponding to the first trench; forming a first doped region in the substrate at least under the first trench; and forming a second doped region in the substrate at a second side of the gate region.
    Type: Grant
    Filed: June 29, 2022
    Date of Patent: August 22, 2023
    Assignee: United Microelectronics Corp.
    Inventors: Tseng Hsun Liu, Min-Hsuan Tsai, Ke-Feng Lin, Ming-Yen Liu, Wen-Chung Chang, Cherng-En Sun
  • Patent number: 11726618
    Abstract: A display device including a substrate and a plurality of pixels in a display region of the substrate. Each of the pixels includes first and second sub-pixels, and each of the first and second sub-pixels has a light emitting region for emitting light. The first sub-pixel includes a first light emitting element in the light emitting region and configured to emit visible light. The second sub-pixel includes a second light emitting element in the light emitting region and configured to emit infrared light and a light receiving element configured to receive the infrared light emitted from the second light emitting element to detect a user's touch. The second light emitting element and the light receiving element in the second sub-pixel are electrically insulated from and optically coupled to each other to form a photo-coupler.
    Type: Grant
    Filed: September 13, 2021
    Date of Patent: August 15, 2023
    Assignee: Samsung Display Co., Ltd.
    Inventors: Hyun Min Cho, Dae Hyun Kim, Sung Chul Kim, Hye Yong Chu, Keun Kyu Song
  • Patent number: 11728211
    Abstract: A semiconductor device structure, along with methods of forming such, are described. The semiconductor device structure includes a device, a first conductive structure disposed over the device, and the first conductive structure includes a first sidewall having a first portion and a second portion. The semiconductor device structure further includes a first spacer layer disposed on the first portion, a second conductive structure disposed adjacent the first conductive structure, and the second conductive structure includes a second sidewall having a third portion and a fourth portion. The semiconductor device structure further includes a second spacer layer disposed on the third portion, and an air gap is formed between the first conductive structure and the second conductive structure. The second portion, the first spacer layer, the fourth portion, and the second spacer layer are exposed to the air gap.
    Type: Grant
    Filed: April 18, 2022
    Date of Patent: August 15, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Lin-Yu Huang, Li-Zhen Yu, Chia-Hao Chang, Cheng-Chi Chuang, Kuan-Lun Cheng, Chih-Hao Wang
  • Patent number: 11721552
    Abstract: A semiconductor device includes a substrate and a material disposed on the substrate. The material layer includes plural first patterns arranged parallel and separately in an array within a first region of the substrate, and plural second patterns parallel and separately disposed at two opposite sides of the first patterns, and plural third patterns parallel and separately disposed at another two opposite sides of the first patterns, wherein each of the third patterns has a relative greater dimension than that of each of the first patterns.
    Type: Grant
    Filed: December 26, 2021
    Date of Patent: August 8, 2023
    Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Feng-Yi Chang, Yu-Cheng Tung, Fu-Che Lee
  • Patent number: 11721591
    Abstract: A method for fabricating semiconductor device includes the steps of: providing a substrate having a fin-shaped structure thereon; forming a single diffusion break (SDB) structure in the substrate to divide the fin-shaped structure into a first portion and a second portion; forming a first gate structure on the SDB structure; forming an interlayer dielectric (ILD) layer around the first gate structure; transforming the first gate structure into a first metal gate; removing the first metal gate to form a first recess; and forming a dielectric layer in the first recess.
    Type: Grant
    Filed: June 4, 2021
    Date of Patent: August 8, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Kai Hsu, Ssu-I Fu, Chun-Ya Chiu, Chi-Ting Wu, Chin-Hung Chen, Yu-Hsiang Lin
  • Patent number: 11715669
    Abstract: A method of manufacturing a through silicon via (TSV) is provided in the present invention, including steps of forming a TSV sacrificial structure in a substrate, wherein the TSV sacrificial structure contacts a metal interconnect on the front side of the substrate, performing a backside thinning process to expose the TSV sacrificial structure from the back side of the substrate, removing the TSV sacrificial structure to form a through silicon hole, and filling the through silicon hole with conductive material to form a TSV.
    Type: Grant
    Filed: August 4, 2021
    Date of Patent: August 1, 2023
    Assignee: Powerchip Semiconductor Manufacturing Corporation
    Inventors: Shih-Ping Lee, Tse-Hsien Wu, Pin-Chieh Huang, Yu-Hsiang Chien, Yeh-Yu Chiang