Patents Examined by Chuong A Luu
  • Patent number: 11621288
    Abstract: A solid-state imaging device includes a plurality of photoelectric conversion portions each provided to correspond to each of a plurality of pixels in a semiconductor substrate and receiving incident light through a light sensing surface, and a pixel separation portion that is embedded into a trench provided on a side portion of the photoelectric conversion portion and electrically separates the plurality of pixels in a side of an incident surface of the semiconductor substrate into which the incident light enters. The pixel separation portion is formed by an insulation material which absorbs the incident light entering the light sensing surface.
    Type: Grant
    Filed: June 4, 2021
    Date of Patent: April 4, 2023
    Assignee: SONY GROUP CORPORATION
    Inventor: Yuki Miyanami
  • Patent number: 11616002
    Abstract: An integrated circuit (IC) with through-circuit vias (TCVs) and methods of forming the same are disclosed. The IC includes a semiconductor device, first and second interconnect structures disposed on first and second surfaces of the semiconductor device, respectively, first and second inter-layer dielectric (ILD) layers disposed on front and back surfaces of the substrate, respectively, and a TCV disposed within the first and second interconnect structures, the first and second ILD layers, and the substrate. The TCV is spaced apart from the semiconductor device by a portion of the substrate and portions of the first and second ILD layers. A first end of the TCV, disposed over the front surface of the substrate, is connected to a conductive line of the first interconnect structure and a second end of the TCV, disposed over the back surface of the substrate, is connected to a conductive line of the second interconnect structure.
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: March 28, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jian-Hong Lin, Hsin-Chun Chang, Ming-Hong Hsieh, Ming-Yih Wang, Yinlung Lu
  • Patent number: 11610825
    Abstract: In a method for semiconductor processing, a semiconductor substrate is provided. The semiconductor substrate defines at least one first trench therein. The at least one first trench has a first depth (d1). A coating layer is deposited onto the semiconductor substrate using at least one precursor under a setting for a processing temperature (T). The coating layer defines at least one second trench having a second depth (d2) above the at least one first trench. A first depth parameter (t) of the second depth (d2) relative to the first depth (d1) is determined. The processing temperature (T) is then determined based on the first depth parameter (t).
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: March 21, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Fen Chen, Tsung-Ying Liu, Yeh-Hsun Fang, Bang-Yu Huang, Chui-Ya Peng
  • Patent number: 11605718
    Abstract: The present disclosure provides a method for preparing a semiconductor structure. The method includes providing a substrate comprising a first top surface; forming an isolation region in the substrate to surround an active region; implanting a plurality of dopants into the substrate to form a first impurity region, a second impurity region and a third impurity region in the active region; forming a gate trench in the active region; forming a first barrier layer on a portion of a sidewall of the gate trench; forming a first gate material in the gate trench, wherein the first gate material comprises a first member surrounded by the first barrier layer; forming a second barrier layer on the first barrier layer and the first gate material; forming a second gate material on the second barrier layer; and forming a gate insulating material on the second gate material.
    Type: Grant
    Filed: November 15, 2021
    Date of Patent: March 14, 2023
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Tseng-Fu Lu
  • Patent number: 11600610
    Abstract: The present invention relates to a semiconductor device and a clamping circuit including a substrate; a first semiconductor layer, arranged on the substrate and composed of a III-nitride semiconductor material; a second semiconductor layer, arranged on the first semiconductor layer and composed of a III-nitride semiconductor material; a power transistor structure, including a gate structure, a drain structure and a source structure arranged on the second semiconductor layer; the first transistor structures, arranged on the second semiconductor layer; and the second transistor structures, arranged on the second semiconductor layer in series.
    Type: Grant
    Filed: April 28, 2020
    Date of Patent: March 7, 2023
    Assignee: INNOSCIENCE (ZHUHAI) TECHNOLOGY CO., LTD.
    Inventors: Yaobin Guan, Jianjian Sheng
  • Patent number: 11600522
    Abstract: For simplifying the dual-damascene formation steps of a multilevel Cu interconnect, a formation step of an antireflective film below a photoresist film is omitted. Described specifically, an interlayer insulating film is dry etched with a photoresist film formed thereover as a mask, and interconnect trenches are formed by terminating etching at the surface of a stopper film formed in the interlayer insulating film. The stopper film is made of an SiCN film having a low optical reflectance, thereby causing it to serve as an antireflective film when the photoresist film is exposed.
    Type: Grant
    Filed: June 9, 2021
    Date of Patent: March 7, 2023
    Assignee: Renesas Electronics Corporation
    Inventors: Katsuhiko Hotta, Kyoko Sasahara
  • Patent number: 11600531
    Abstract: A semiconductor device includes a single diffusion break (SDB) structure dividing a fin-shaped structure into a first portion and a second portion, an isolation structure on the SDB structure, a first spacer adjacent to the isolation structure, and a metal gate adjacent to the isolation structure. Preferably, a top surface of the first spacer is lower than a top surface of the isolation structure and a bottom surface of the first spacer is lower than a bottom surface of the metal gate.
    Type: Grant
    Filed: June 4, 2021
    Date of Patent: March 7, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Kai Hsu, Ssu-I Fu, Chun-Ya Chiu, Chi-Ting Wu, Chin-Hung Chen, Yu-Hsiang Lin
  • Patent number: 11587867
    Abstract: Semiconductor devices includes a first interlayer insulating layer, a lower interconnection line in the first interlayer insulating layer, an etch stop layer on the first interlayer insulating layer and the lower interconnection line, a second interlayer insulating layer on the etch stop layer, and an upper interconnection line in the second interlayer insulating layer. The upper interconnection line includes a via portion extending through the etch stop layer and contacting the lower interconnection line. The via portion includes a barrier pattern and a conductive pattern. The barrier pattern includes a first barrier layer between the conductive pattern and the second interlayer insulating layer, and a second barrier layer between the conductive pattern and the lower interconnection line. A resistivity of the first barrier layer is greater than that of the second barrier layer. A nitrogen concentration of the first barrier layer is greater than that of the second barrier layer.
    Type: Grant
    Filed: April 21, 2021
    Date of Patent: February 21, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jongjin Lee, Kyungwook Kim, Rakhwan Kim, Seungyong Yoo, Eun-Ji Jung
  • Patent number: 11581225
    Abstract: A method for manufacturing a semiconductor device comprising: providing a substrate, wherein a first gate structure corresponding to a dense area transistor and a second gate structure corresponding to an isolated area transistor are formed on the substrate, and the first gate structure is higher than the second gate structure; forming a buffer layer over the second gate structure, wherein the upper surface of the buffer layer is flush with the upper surface of the first gate structure; and removing the top of the first gate structure, and forming a hard mask filling layer on a top area of the first gate structure.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: February 14, 2023
    Assignee: Shanghai Huali Integrated Circuit Corporation
    Inventors: Changhung Kung, Ting Ye, Xiumei Hu, Jianxun Chen, Chanyuan Hu
  • Patent number: 11581440
    Abstract: A transistor with small parasitic capacitance can be provided. A transistor with high frequency characteristics can be provided. A semiconductor device including the transistor can be provided. Provided is a transistor including an oxide semiconductor, a first conductor, a second conductor, a third conductor, a first insulator, and a second insulator. The first conductor has a first region where the first conductor overlaps with the oxide semiconductor with the first insulator positioned therebetween; a second region where the first conductor overlaps with the second conductor with the first and second insulators positioned therebetween; and a third region where the first conductor overlaps with the third conductor with the first and second insulators positioned therebetween. The oxide semiconductor including a fourth region where the oxide semiconductor is in contact with the second conductor; and a fifth region where the oxide semiconductor is in contact with the third conductor.
    Type: Grant
    Filed: November 12, 2021
    Date of Patent: February 14, 2023
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Masayuki Sakakura
  • Patent number: 11575016
    Abstract: The present application discloses a method for fabricating a semiconductor device includes providing a substrate, forming a gate stack on the substrate and a pair of heavily-doped regions in the substrate, forming a programmable contact having a first width on the gate stack, and forming a first contact having a second width, which is greater than the first width, on one of the pair of heavily-doped regions.
    Type: Grant
    Filed: May 13, 2021
    Date of Patent: February 7, 2023
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Chin-Ling Huang
  • Patent number: 11575013
    Abstract: A semiconductor device and the like with low power consumption are provided. In a semiconductor device including an electrostatic actuator group, an OS transistor and a capacitor are provided in each electrostatic actuator, and a power supply voltage supplied from the outside is boosted in each electrostatic actuator. The use of the OS transistor can retain the boosted voltage for a long period even after the supply of the power supply voltage is stopped. The use of the OS transistor can miniaturize the capacitor.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: February 7, 2023
    Assignee: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Kouhei Toyotaka, Hideki Uochi
  • Patent number: 11574866
    Abstract: An insulating layer containing fillers is formed to cover a first wiring layer. An opening portion, in which the first wiring layer is exposed, is formed in the insulating layer. A first alkali treatment, an ultrasonic cleaning treatment, and a second alkali treatment are sequentially performed on an upper surface of the insulating layer, on an inner wall surface of the opening portion, and an upper surface of the first wiring layer exposed in the opening portion. A second wiring layer electrically connected to the first wiring layer is formed by filling the opening portion by plating. The second wiring layer extends from an inside of the opening portion to the upper surface of the insulating layer.
    Type: Grant
    Filed: November 11, 2021
    Date of Patent: February 7, 2023
    Assignee: SHINKO ELECTRIC INDUSTRIES CO., LTD.
    Inventors: Yoshihisa Kanbe, Tomoyuki Shimodaira, Takashi Sato
  • Patent number: 11569354
    Abstract: A method of manufacturing a recessed access device includes the following operations. A first trench is formed in a substrate. A first gate oxide layer is formed on an inner surface of the first trench. A sacrificial layer is formed in a bottom of the first trench, in which a portion of the first gate oxide layer above the sacrificial layer is exposed from the first trench. The portion of the first gate oxide layer is removed to expose a sidewall of the first trench. The sidewall of the first trench is oxidized to form a second gate oxide layer within the substrate, in which the second gate oxide layer is in contact with the first gate oxide layer. The sacrificial layer is removed to form a second trench.
    Type: Grant
    Filed: April 21, 2022
    Date of Patent: January 31, 2023
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Kung-Ming Fan
  • Patent number: 11557548
    Abstract: A semiconductor package formed utilizing multiple etching steps includes a lead frame, a die, and a molding compound. The lead frame includes leads and a die pad. The leads and the die pad are formed from a first conductive material by the multiple etching steps. More specifically, the leads and the die pad of the lead frame are formed by at least three etching steps. The at least three etching steps including a first etching step, a second undercut etching step, and a third backside etching step. The second undercut etching step forming interlocking portions at an end of each lead. The end of the lead is encased in the molding compound. This encasement of the end of the lead with the interlocking portion allows the interlocking portion to mechanically interlock with the molding compound to avoid lead pull out. In addition, by utilizing at least three etching steps the leads can be formed to have a height that is greater than the die pad of the lead frame.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: January 17, 2023
    Assignee: STMicroelectronics, Inc.
    Inventors: Aaron Cadag, Lester Joseph Belalo, Ela Mia Cadag
  • Patent number: 11557672
    Abstract: A wide band gap semiconductor device includes a semiconductor layer, a trench formed in the semiconductor layer, first, second, and third regions having particular conductivity types and defining sides of the trench, and a first electrode embedded inside an insulating film in the trench. The second region integrally includes a first portion arranged closer to a first surface of the semiconductor layer than to a bottom surface of the trench, and a second portion projecting from the first portion toward a second surface of the semiconductor layer to a depth below a bottom surface of the trench. The second portion of the second region defines a boundary surface with the third region, the boundary region being at an incline with respect to the first surface of the semiconductor layer.
    Type: Grant
    Filed: June 2, 2021
    Date of Patent: January 17, 2023
    Assignee: ROHM CO., LTD.
    Inventor: Kengo Omori
  • Patent number: 11551972
    Abstract: An integrated circuit device includes a fin-type active region extending on a substrate in a first direction parallel to a top surface of the substrate; a gate structure extending on the fin-type active region and extending in a second direction parallel to the top surface of the substrate and different from the first direction; and source/drain regions in a recess region extending from one side of the gate structure into the fin-type active region, the source/drain regions including an upper semiconductor layer on an inner wall of the recess region, having a first impurity concentration, and including a gap; and a gap-fill semiconductor layer, which fills the gap and has a second impurity concentration that is greater than the first impurity concentration.
    Type: Grant
    Filed: February 11, 2021
    Date of Patent: January 10, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-yeong Joe, Seok-hoon Kim, Jeong-ho Yoo, Seung-hun Lee, Geun-hee Jeong
  • Patent number: 11545518
    Abstract: A method for fabricating an image sensor is described which includes forming an insulating layer on a semiconductor substrate and forming a recess in the semiconductor substrate and the insulating layer. An epitaxial structure is grown in the recess. A first polish treatment is then performed to the insulating layer and the epitaxial structure. The insulating layer is detected to obtain a signal intensity, and the signal intensity increases as a thickness of the insulating layer decreases. The first polish treatment stops when the signal intensity reaches a target value.
    Type: Grant
    Filed: August 11, 2020
    Date of Patent: January 3, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chiao-Chi Wang, Chung-Chuan Tseng, Chia-Ping Lai
  • Patent number: 11545540
    Abstract: The present application provides an array substrate. The array substrate includes a base substrate; a plurality of light emitting elements on the base substrate; a plurality of driving thin film transistors for driving light emission of the plurality of light emitting elements, each of the plurality of driving thin film transistors including a first active layer; one or more power supply lines configured to supply a driving current respectively to the plurality of light emitting elements; and a light shielding layer configured to shield light from irradiating on the first active layer, the light shielding layer being electrically connected to at least one of the one or more power supply lines.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: January 3, 2023
    Assignee: Beijing BOE Technology Development Co., Ltd.
    Inventors: Pan Xu, Xiaoyun Liu
  • Patent number: 11538922
    Abstract: A manufacturing method of an HEMT includes: forming a heterostructure; forming a first gate layer of intrinsic semiconductor material on the heterostructure; forming a second gate layer, containing dopant impurities of a P type, on the first gate layer; removing first portions of the second gate layer so that second portions, not removed, of the second gate layer form a doped gate region; and carrying out a thermal annealing of the doped gate region so as to cause a diffusion of said dopant impurities of the P type in the first gate layer and in the heterostructure, with a concentration, in the heterostructure, that decreases as the lateral distance from the doped gate region increases.
    Type: Grant
    Filed: December 10, 2020
    Date of Patent: December 27, 2022
    Assignee: STMICROELECTRONICS S.r.l.
    Inventor: Ferdinando Iucolano