Patents Examined by Danielle B Henkel
  • Patent number: 10968435
    Abstract: The invention provides an automated system for producing induced pluripotent stem cells (iPSCs) from adult somatic cells. Further, the system is used for producing differentiated adult cells from stem cells.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: April 6, 2021
    Assignee: New York Stem Cell Foundation, Inc.
    Inventors: Scott Noggle, Kevin C. Eggan, Stephen Chang, Susan L. Solomon
  • Patent number: 10960351
    Abstract: A method and apparatus for cleaning a contaminated air stream, the method comprising the step of passing the contaminated air stream through a multistage cleaning reactor, wherein at least two stages of the multistage cleaning reactor comprise marine shell material.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: March 30, 2021
    Assignee: ANUA CLEAN AIR INTERNATIONAL LIMITED
    Inventor: John Paul Phillips
  • Patent number: 10934518
    Abstract: The present invention relates to a novel bioreactor system for cell cultivation. More specifically, the invention relates to a compact bioreactor system which has several integrated functions and enables small scale static culture as well as scale-up rocking culture in the same bioreactor. The bioreactor system comprises tray for positioning of a cell culture bag having adjustable volume, a lid covering the cell culture bag and provided with heating function, an integrated perfusion unit, an integrated cell loading unit, and an integrated unit for automatic cell culture sampling, wherein the bioreactor system is controlled by a single control unit. The invention also relates to a method of cell culture using the bioreactor system for culture of therapeutic cells.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: March 2, 2021
    Assignee: Global Life Sciences Solutions USA LLC
    Inventors: Haresh Digambar Patil, Manoj Ramakrishna, Anoop Bhargav, Praveen Paul, Sebastian John, Swapnil Puranik
  • Patent number: 10927621
    Abstract: A method of remediation is disclosed. The method may include combining mud cuttings with bacteria-containing soil and water to form a feed mixture. The mud cuttings include a hydrocarbon. The method further includes combining the feed mixture with a surfactant blend containing a surfactant to form a feed/surfactant mixture and shearing the feed/surfactant mixture to form a micro-emulsion. The method may also include reducing the hydrocarbon content of the mud cuttings to form disposable cuttings.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: February 23, 2021
    Inventor: Michael Charles Gibson
  • Patent number: 10927334
    Abstract: An algal growth system includes a first flexible sheet material mounted on a first frame in a first mounted geometry, the first flexible sheet material having a substantially vertical orientation when mounted on the first frame such that a first height of the first mounted geometry is greater than a first width of the first mounted geometry. The algal growth system also includes a first drive shaft coupled with the first frame, an actuator system coupled with the first drive shaft, a motor coupled with the actuator system. The motor actuates the actuator system and the first drive shaft such that the first flexible sheet material is actuated. The algal growth system also includes a liquid source consisting of a dripper or a mister. The liquid source is configured to direct a contacting liquid to the first flexible sheet material.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: February 23, 2021
    Assignee: Gross-Wen Technologies, Inc.
    Inventors: Martin Anthony Gross, Zhiyou Wen
  • Patent number: 10913926
    Abstract: An automatic processing device of culture plates (2) for microbiological samples, wherein the processing device (1) includes a support frame (3); a slide (4) provided with a seating (5) configured for removably housing a culture plate (2) and movably mounted on the support frame (3) so as to be selectively displaceable between a first loading position, a plurality of image-acquiring positions, and a first unloading; a camera (6) of a linear type, provided with an optic (7) of a telecentric type and a trilinear sensor, and arranged according to a vertical axis (8) such as to acquire, at an image-acquiring zone, a multiplicity of linear images of corresponding linear portions of an upper surface of the culture plate (2), during the displacing of the slide (4); a first lighting device (11) orientated such as to illuminate the linear portions of an upper surface of the culture plate (2); an advancing device (14) of the slide (4) configured such as to enable obtaining a constant and substantially vibration-free ad
    Type: Grant
    Filed: January 10, 2020
    Date of Patent: February 9, 2021
    Assignee: Copan Italia S.p.A.
    Inventor: Daniele Triva
  • Patent number: 10900012
    Abstract: A probe assembly and a method of manufacturing a probe assembly. In one aspect there is a method of manufacturing a probe assembly comprising providing an electrode carrier carrying a plurality of electrodes, the electrode carrier comprising a top wherein the plurality of electrodes are exposed relative to the top and a bottom having a plurality of electrical contacts in electrical communication with the plurality of electrodes respectively; moulding a body around the electrode carrier to retain the electrode carrier whilst leaving the plurality of electrodes exposed. The invention also extends to a biomass monitoring system comprising a flexible enclosure including a probe assembly and support arrangement for receipt of the probe assembly in an engaged configuration.
    Type: Grant
    Filed: April 22, 2017
    Date of Patent: January 26, 2021
    Inventor: Paul Yeomans
  • Patent number: 10900005
    Abstract: The disclosure relates to a liquid reservoir for a food waste recycling appliance including a reservoir body with a hollow interior, a first arm portion, and a second arm portion, and at least partially bounding an interstitial space exterior of the reservoir body. A food waste through opening can be defined by an exterior surface of the reservoir body.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: January 26, 2021
    Assignee: Whirlpool Corporation
    Inventors: Akshay Bhandari, Thomas L. Burger, Rachel Maghas
  • Patent number: 10900008
    Abstract: Apparatus for processing life-based organic particles, including particles selected from the list comprising cells, cellular spheroids, tissues, eukaryotes, micro-organisms, organs or embryos, comprises a hollow volume (10) that (a) is internally divided into at least first (14), second (16) and third (17) sub-volumes by at least two phaseguides (12, 13) formed inside the volume and (b) includes parts that are relatively upstream and relatively downstream when judged with reference to the movement of a meniscus or a bulk liquid in the volume (10). The apparatus includes at least first, second and third fluid conduits (19, 21, 22) connected to permit fluid communication between the upstream exterior of the volume (10) and a respective said sub-volume (14, 16, 17); and at least one further conduit (24) connected to permit fluid communication between the downstream exterior of the volume (10) and a said sub-volume.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: January 26, 2021
    Assignee: UNIVERSITEIT LEIDEN
    Inventors: Paul Vulto, Sebastiaan Johannes Trietsch, Heiko Jan van der Linden, Adrianus Theodoras Joore, Thomas Hankemeier
  • Patent number: 10895546
    Abstract: The present disclosure relates to a measuring device with a bipolar electrode array for the impedimetric analysis of adherent cells according to the ECIS principle (electric cells substrate impedance sensing). The measuring device comprises an electrode array which is adapted for being wetted with an electrolyte solution and adherently growing cells in order to perform impedimetric cell analyzes, characterized in that the electrode array comprises a bipolar electrode on a substrate, where the bipolar electrode is formed as a conductive path on the transparent substrate and has an inherent resistance between two connection points of the conductive path that is a multiple of the AC impedance of the electrolyte solution at 1 MHz, measured at the two connection points.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: January 19, 2021
    Assignees: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V., UNIVERSITAET REGENSBURG
    Inventors: Christian Goetz, Joachim Wegener
  • Patent number: 10883078
    Abstract: A culture device supplying an accurate amount of liquid into a culture bag has a culture bag having ports, a first bag holding portion having supporting surfaces supporting the culture bag, a rotation mechanism rotating the first bag holding portion, a liquid supplying mechanism supplying a liquid through a tube communicating with the ports a weight detector detecting the weight of the culture bag and the first bag holding portion, and a control portion, in which the control portion sets a first reference value according to a first detection information output from the weight detector in a first state and carries out a liquid supplying step of stopping the liquid supplying mechanism under the condition where a second detection information output from the weight detector when a liquid is supplied to the culturing bag reaches a first target value obtained by adding the weight of the liquid to be supplied to the first reference value.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: January 5, 2021
    Inventors: Norihisa Sasayama, Masakatsu Takeuchi, Atsushi Taguchi
  • Patent number: 10870823
    Abstract: Described herein are apparatus comprising: a first layer comprising a first microfluidic channel; a second layer comprising a second microfluidic channel; and a membrane for culturing cells; along with methods of making and using same.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: December 22, 2020
    Assignee: LEHIGH UNIVERSITY
    Inventors: Yaling Liu, Antony Thomas
  • Patent number: 10851338
    Abstract: Bio-reactive systems for voltage controlled metabolism are described, that include electrochemical-electrostatic systems having a conventional three electrode cell modified with at least one additional gating electrode. The rate of a metabolic process occurring in at least one organism disposed on a working electrode is controllable by applying a gating voltage VG to the at least one gating electrode. A method for voltage controlled metabolism in a bio-reactive electrostatic cell that includes applying a gating voltage VG to at least one gating electrode is also described. The rate of a metabolic process may be controlled by altering at least one of the magnitude and polarity of the applied gating voltage VG. The method for voltage controlled metabolism may further be used to treat cancer and/or increase the rate of ethanol production by fermentation.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: December 1, 2020
    Inventor: Siu-Tung Yau
  • Patent number: 10850283
    Abstract: The invention relates to a thermal cycler (10) comprising a housing (12), the housing (12) accommodating a thermal block (14) having a plurality of sample wells (32), each for receiving a test sample in a sample vessel, electric heater means (18) for heating the thermal block (14), a power supply (24) and an electronic control (22) for controlling the electric heater means (18), and further comprising a temperature analysis and/or verification unit (28) for analyzing and/or verifying a thermal performance of the thermal block (14). The invention further relates to a method for analyzing or verifying a thermal performance of a thermal cycler (10) and for calibrating the thermal cycler (10).
    Type: Grant
    Filed: December 30, 2018
    Date of Patent: December 1, 2020
    Inventor: James Courtney
  • Patent number: 10843195
    Abstract: Provided herein are devices, systems, and methods for specimen preparation by employing a combination of capillary and centrifugal forces. For example, provided herein are devices, systems, and methods that collect a sample by capillary force, separate components of the collected sample by centrifugal force, and isolate one or more of the separated components by further capillary force.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: November 24, 2020
    Assignee: Northwestern University
    Inventors: David M. Kelso, Robert Elghanian
  • Patent number: 10836988
    Abstract: A customizable laboratory instrument comprising an interior space for receipt of test materials therein. An indented exterior surface of the laboratory instrument defines a boundary surface, a backing surface, and a sidewall. The backing surface is offset from the boundary surface a distance substantially equal to a depth of the sidewall. A panel having an edge is attachable to the sidewall such that a space is formed between the panel and backing surface for receipt of an object therein.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: November 17, 2020
    Assignee: BECTON DICKINSON AND COMPANY
    Inventors: Scott Shindledecker, Edward Skevington, Brent Ronald Pohl, Dustin Diemert, Thierry Guillet
  • Patent number: 10836991
    Abstract: The present disclosure is directed to systems and methods for sampling and/or controlling the productivity of a bioreactor. The system and methods can include a vessel capable of providing an environment suitable for containing whole broth that can produce the bioproduct, wherein the whole broth contains media and at least one undissolved species, an automated sampling system, a first analytical instrument, and a control system.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: November 17, 2020
    Assignee: Bend Research, Inc.
    Inventors: Roderick J. Ray, Adam S. Carroll, Brandon J. Downey, Lisa J. Graham
  • Patent number: 10837953
    Abstract: According to one embodiment, a sensor includes a nonmagnetic layer and a plurality of magnetic field sensors. The nonmagnetic layer has a first surface and a second surface. The magnetic field sensors are arranged along the second surface. The second surface is between the first surface and the magnetic field sensors. Each of the magnetic field sensors includes a first magnetic layer, a second magnetic layer provided between the first magnetic layer and the nonmagnetic layer, and an intermediate layer provided between the first magnetic layer and the second magnetic layer. The intermediate layer is nonmagnetic. A distance between the first surface and the second magnetic layer is not more than a pitch of the magnetic field sensors.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: November 17, 2020
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Akira Kikitsu, Hitoshi Iwasaki
  • Patent number: 10822289
    Abstract: The disclosure relates to a composting device including a housing defining an interior with an access opening providing access to the interior, a composter bin located within the interior and in communication with the access opening, and a funnel assembly integrated with the access opening.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: November 3, 2020
    Assignee: Whirlpool Corporation
    Inventors: Abhishek P. Buzruk, Christopher C. Wilcox, Michael S. Seeley
  • Patent number: 10814321
    Abstract: At least one exemplary embodiment of the invention is directed to a molecular diagnostic device that comprises a cartridge configured to eject samples comprising genomic material into a microfluidic chip that comprises an amplification area, a detection area, and a matrix analysis area.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: October 27, 2020
    Assignee: Canon U.S.A., Inc.
    Inventors: Hiroshi Inoue, Ivor T. Knight, Gregory A. Dale, Rita R. Colwell