Patents Examined by David D. Le
  • Patent number: 8968142
    Abstract: A transmission gearing arrangement produces nine forward speed ratios and one reverse speed ratio by selective engagement of three shift elements in various combinations. Some embodiment includes four simple planetary gear sets and six shift elements of which one is a brake. Another embodiment includes two axis transfer gear pairs in place of one of the planetary gear sets.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: March 3, 2015
    Assignee: Ford Global Technologies, LLC
    Inventor: Robert Scott Lippert
  • Patent number: 8965652
    Abstract: A vehicle includes an engine, a transmission, and a controller which executes a method. The transmission includes a clutch having an actuator which applies the clutch using position-based control logic. The transmission also includes a fluid pump and a variable-force or other solenoid valve positioned downstream of the pump and upstream of the clutch. The valve outputs a flow rate (Q) for a corresponding solenoid control current (I). The controller adapts a calibrated Q vs. I characteristic table of the valve for different transmission temperatures by applying closed-loop position control signals to the actuator at the different transmission temperatures and recording a null point(s) describing the corresponding solenoid control current (I) at a zero flow rate condition. The controller calculates an offset value for solenoid control current (I) using the recorded null point(s), applies the offset value to the characteristic table, and controls the clutch using the adapted characteristic table.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: February 24, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Steven P. Moorman, David H. Vu
  • Patent number: 8965644
    Abstract: A system and a method of controlling shifting for a vehicle includes a data detector detecting data for a shift control, a road condition determiner determining a road condition based on the data, a short term driving tendency determiner determining a short term driving tendency of a driver based on the data, and a long term driving tendency determiner determining a long term driving tendency of the driver based on the short term driving tendency of the driver. An optimal driving mode determiner determines an optimal driving mode based on the road condition, the short term driving tendency of the driver, and the long term driving tendency of the driver, wherein the system controls shifting according to the optimal driving mode determined by the optimal driving mode determiner.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: February 24, 2015
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Byeong Wook Jeon, Heeyong Lee
  • Patent number: 8965653
    Abstract: A vehicle transmission includes a plurality of oncoming clutches that are hydraulically-actuated. A controller is operatively connected to the plurality of oncoming clutches. An algorithm stored on and executable by the controller causes the controller to determine if at least one predefined coast condition is met and identify the plurality of oncoming clutches configured to be engageable during a downshift event from an initial gear ratio to respective other gear ratios. The initial gear ratio is greater than each of the respective other gear ratios. The algorithm causes the controller to generate a first pressure command to at least partially pressurize a first one of the oncoming clutches to a first staging pressure (PS1) if the at least one predefined coast condition is met prior to the downshift event. The first staging pressure (PS1) is defined as a first return spring pressure (PR1) minus a first variable correction factor (CF1).
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: February 24, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Kristopher J. Kokko, Dara Monajemi, David C. Webert, Amanda P. Igel
  • Patent number: 8965649
    Abstract: A vehicle includes an internal combustion engine, an engine control module (ECM) programmed to estimate engine torque as a function of throttle request, and a transmission assembly. The transmission assembly includes a plurality of gear sets and clutches, including an offgoing clutch and an oncoming clutch for a power downshift, and a transmission control module (TCM). The TCM includes a processor and memory on which is recorded a shift line for the downshift, and instructions for executing the downshift. The TCM communicates an estimated throttle level at the shift line to the ECM, receives an estimated engine torque for the estimated throttle level at the shift line from the ECM, and decreases offgoing pressure to the offgoing clutch to a threshold pressure level prior to executing the downshift. The TCM then decreases the offgoing clutch pressure to a calibrated pressure at the shift line to execute the downshift.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: February 24, 2015
    Assignee: GM Global Technology Operations LLC
    Inventor: Todd Thor
  • Patent number: 8956256
    Abstract: Disclosed is a transmission device for work vehicles, said transmission device being capable of being used with high-horsepower engines, without an accompanying loss of power transmission efficiency or fuel economy. The transmission device is provided with: an input shaft (20) that transmits power from an engine (3); a continuously-variable transmission (40) that is disposed on the input shaft (20) and outputs power transmitted from the input shaft (20), steplessly converting the speed thereof; and a reversing clutch device (50) that outputs, either in a forward rotational direction or a reverse rotational direction, power outputted from the continuously-variable transmission (40). The reversing clutch device (50) can be selectively switched, and the gear ratio can be steplessly changed by the continuously-variable transmission (40).
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: February 17, 2015
    Assignee: Yanmar Co., Ltd.
    Inventors: Shuji Shiozaki, Takeshi Ouchida
  • Patent number: 8958962
    Abstract: An electric shift operating device is basically provided with a base member, a first operating member, a clicking mechanism, a signal generating arrangement and a controller. The base member is configured to be attached to a bicycle. The first operating member is movably supported on the base member from a rest position to an operated position. The clicking mechanism is operated by the first operating member to produce a haptic feedback response upon the first operating member reaching the first operated position. The signal generating arrangement generates a first shift start signal prior to or upon the first operating member reaching the first operated position. The controller controls a gear position of the electric gear changing device. The controller receives the first shift start signal and operates the electric gear changing device towards a target gear position upon receiving the first shift start signal.
    Type: Grant
    Filed: April 5, 2013
    Date of Patent: February 17, 2015
    Assignee: Shimano Inc.
    Inventors: Yoshimitsu Miki, Satoshi Shahana
  • Patent number: 8944231
    Abstract: A mechanism for changing the operating condition of a shifting element having two shifting element halves, which can either be functionally connected to connect two components or disengaged to break the connection between the components. The mechanism includes a drive machine and a drive converter unit in the area of which rotary drive motion of the drive machine can be converted into a translational actuation movement of the shifting element. A spring device is associated with the drive converter unit, whose spring force assists with actuating the shifting element in the engaging direction. The spring device includes an approximately circular flat spring element which, in at least one area of the drive converter unit, is in contact with at least one cam, whose stress condition varies as a function of an operating condition of the drive converter unit and is designed to be rotationally fixed.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: February 3, 2015
    Assignee: ZF Friedrichshafen AG
    Inventors: Detlef Baasch, Ulrich Mair
  • Patent number: 8942901
    Abstract: A hydraulic control system for a dual clutch transmission includes a plurality of solenoids and valves in fluid communication with a plurality of clutch actuators and with a plurality of synchronizer actuators. The clutch actuators are operable to actuate a plurality of torque transmitting devices and the synchronizer actuators are operable to actuate a plurality of synchronizer assemblies. Selective activation of combinations of the solenoids allows for a pressurized fluid to activate at least one of the clutch actuators and synchronizer actuators in order to shift the transmission into a desired gear ratio.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: January 27, 2015
    Assignee: GM Global Technology Operations, LLC
    Inventors: Philip C. Lundberg, Bret M. Olson, Brian W. Whitmarsh, Wayne B. Vogel
  • Patent number: 8936142
    Abstract: A torque transmission device, comprising a hydrodynamic component, a shiftable clutch device and a vibration damper. A turbine shell of the hydrodynamic component is connected with a damper input component of the vibration damper and/or with a turbine shell hub, which is at least indirectly supported in axial direction at a damper hub through a torque-proof connection. At least one axial support surface is provided at a face of a damper component, adjacent to the torque-proof connection in an axial direction, or of the damper hub. The face is oriented away in axial direction from the torque-proof connection. The invention is characterized in that a support element is arranged at the damper component or at the damper hub. The support element includes a support surface forming an axial protrusion, extending through adjacently arranged damper components or portions of a support.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: January 20, 2015
    Assignee: Schaeffler Technologies AG & Co. KG
    Inventors: Eugen Kombowski, Stephan Maienschein
  • Patent number: 8936525
    Abstract: A gear system 1 includes: an internal gear 12; an external gear 11; an input shaft 10 rotatably inserted into a center hole 11a formed in the external gear 11; and an anti-rotation section 19 configured to block rotation of the external gear 11. The input shaft 10 has an eccentric part 10a. The anti-rotation section 19 is formed such that the input shaft 10 is inserted into the anti-rotation section 19, and is rotatable about a center line of the input shaft 10. The gear system 1 includes: a brake 15 configured to disable movement of the anti-rotation section 19 about the input shaft 10; and a clutch system 16 configured to select one of a coupling state in which the anti-rotation section 19 and the input shaft 10 are coupled together to rotate together, and a non-coupling state in which the anti-rotation section 19 and the input shaft 10 are rotatable relative to each other.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: January 20, 2015
    Inventor: Toshiaki Shimada
  • Patent number: 8938342
    Abstract: A vehicle includes torque sources, a transmission, and a controller programmed to execute a method. In executing the associated method, the controller determines whether continuous output torque is required through a torque exchange. When continuous output torque is required, the controller synchronizes and fills the oncoming clutch, estimates capacity of the oncoming clutch, and expands a short-term torque capacity of the oncoming clutch during the torque exchange, doing so in response to a control objective having a threshold priority. Onset of the torque exchange delays until the short-term torque capacity is sufficient for receiving all torque load from the offgoing clutch without affecting output torque.
    Type: Grant
    Filed: July 25, 2013
    Date of Patent: January 20, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Pinaki Gupta, Lawrence A. Kaminsky, Sean W. McGrogan
  • Patent number: 8935068
    Abstract: A method of selecting a gear ratio of a transmission. The method includes measuring a current road grade with a sensing device and communicating the current road grade measurement to the controller. The controller receives a signal corresponding to a service brake input and determines a desired maximum acceleration limit of the vehicle. The method also includes calculating a predicted vehicle acceleration, measuring a current vehicle acceleration, and calculating an error value as a function of the predicted vehicle acceleration and measured vehicle acceleration. The method also computes an estimated required tractive braking effort and estimated tractive braking effort for at least one of N automatically selectable gear ratios of the transmission and selects one gear ratio of the N automatically selectable gear ratios for the operation of the transmission based on a comparison of the estimated required tractive braking effort and estimated tractive braking effort.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: January 13, 2015
    Assignee: Allison Transmission, Inc.
    Inventors: John Kresse, John A. Byerly, Todd Dygert, Mark A. Rains
  • Patent number: 8924108
    Abstract: A method of managing available operating states in an electrified powertrain includes: identifying a plurality of operating states; determining an allowable hardware operating speed range for each of the plurality of operating states; determining a real operating speed range for each of the plurality of operating states; determining an ideal operating speed range for each of the plurality of operating states, the ideal operating speed range being a subset of the allowable real operating speed range; indicating an operating state of the plurality of operating states as ideal-allowed if an actual output speed of the electrified powertrain is within the ideal operating speed range for that operating state; and commanding the electrified powertrain to operate within one of the operating states that is indicated as ideal-allowed.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: December 30, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Anthony H. Heap, Kee Yong Kim, Samantha Victoria Lado, John Janczak
  • Patent number: 8920281
    Abstract: A transmission has an input member, an output member, at least four planetary gear sets, a plurality of coupling members and a plurality of torque transmitting devices. Each of the planetary gear sets includes first, second and third members. The torque transmitting devices include clutches and brakes actuatable in combinations of three to establish a plurality of forward gear ratios and one reverse gear ratio.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: December 30, 2014
    Assignee: GM Global Technology Operations, LLC
    Inventors: Edward W. Mellet, James M. Hart, Andrew W. Phillips
  • Patent number: 8924110
    Abstract: When a rotational speed of a secondary pulley is less than a first reference value, the disclosed electronic control device implements lower limit hydraulic control to adjust the hydraulic pressure of a primary pulley to be at a lower limit hydraulic pressure. When the rotational speed is equal to or exceeds the first reference value, but is less than a second reference value, the electronic control device implements balanced hydraulic control to adjust the hydraulic pressure to be more than the lower limit hydraulic pressure. When the rotational speed is equal to or exceeds the second reference value, the electronic control device implements feedback control to correct the hydraulic pressure on the basis of the size of the difference between a target transmission gear ratio and a transmission gear ratio, calculated on the basis of rotational speeds detected by each rotational speed sensor.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: December 30, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Taira Iraha, Kunio Hattori
  • Patent number: 8915345
    Abstract: Apparatus directed to the art of disengaging an input from an output at predetermined torque values. A torque limiting clutch capable of use as a solid drive unit and a torque limited unit for which the torque disengagement value is selectable. The torque limiting clutch has an overload assembly and a torque drive mechanism which may comprise a plurality of drive pins. Additionally, the torque limiting clutch may comprise seals to discourage contaminants from entering the clutch.
    Type: Grant
    Filed: December 3, 2013
    Date of Patent: December 23, 2014
    Assignee: A&E Incorporated
    Inventors: Billy Greuel, Brandon Ullrich, Timothy Alho
  • Patent number: 8911323
    Abstract: A multi-ratio transmission system is provided, including multiple planet gear sub-systems, at least two coupling assemblies, a setting element, a setting element controller, an annular gear, a cylindrical casing, a sprocket, and a central axle. The planet gear sub-systems are disposed coaxially in series along a first axis. Each of the planet gear sub-system includes a sun gear and at least one planet gear. Each coupling assembly transmits the rotation between every two adjacent planet gear sub-systems. The setting element optionally engages with the sun gear. The annular gear is installed onto a one-way clutch. The cylindrical casing encloses the planet gear sub-systems. The sprocket is installed onto the planet gear sub-systems through the one-way clutch. The central axle enables the hollowed tube of the setting element controller to rotate around the central axle.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: December 16, 2014
    Assignee: Cheng Ho Chen
    Inventor: Cheng Ho Chen
  • Patent number: 8914200
    Abstract: A control device for a belt type continuously variable transmission device includes primary And secondary pulleys and a belt and controls gear ratio based on a running radius of the belt on a pulley by controlling primary and secondary oil pressures. The transmission includes a belt slip control unit and a belt slip control permission determining unit. The belt slip control unit performs such control as to oscillate the secondary oil pressure, estimates a belt slip condition by monitoring the phase difference between an oscillation component included in an actual secondary oil pressure and an oscillation component included in an actual gear ration, and then reduces the actual secondary oil pressure to maintain a predetermined belt slip condition. The belt slip control permission determining unit permits belt slip control when a transmission rate as a change rate of the gear ratio is less than a predetermined value.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: December 16, 2014
    Assignees: Nissan Motor Co., Ltd., Jatco Ltd
    Inventors: Katsumi Doihara, Yoshihisa Kodama, Yasuaki Yoshikawa, Kenta Nakamura, Kiyotaka Sawano, Masahiro Nishi, Hidemasa Kawaguchi, Keisuke Koyama
  • Patent number: 8914201
    Abstract: A control device controls a belt type continuously variable transmission including a belt slip controller and a belt slip control permission determining unit. The device decreases belt friction when an estimated accuracy of a belt slip condition is high and prevents a belt from greatly slipping when an estimated accuracy is low. The device includes primary and secondary pulleys and the belt, and controls a gear ratio based on a running radius of the belt on a pulley by controlling primary and secondary oil pressures. The controller oscillates a secondary oil pressure, estimates the belt slip condition by monitoring a phase difference between oscillation components, and reduces an actual secondary oil pressure to maintain a predetermined belt slip condition. The determining unit permits belt slip control when a torque change speed input to the transmission mechanism is less than a predetermined value.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: December 16, 2014
    Assignees: Nissan Motor Co., Ltd., Jatco Ltd
    Inventors: Katsumi Doihara, Yoshihisa Kodama, Yasuaki Yoshikawa, Kenta Nakamura, Tomoyuki Mizuochi, Kiyotaka Sawano, Masahiro Nishi, Hidemasa Kawaguchi, Keisuke Koyama