Patents Examined by David J Makiya
  • Patent number: 10278667
    Abstract: An X-ray diagnostic apparatus of an embodiment includes an image generator, a detection unit, and an irradiation control unit. The image generator successively generates X-ray images based on X-rays emitted from an X-ray tube and transmitted through a subject. The detection unit detects a position of a predetermined target included in the successively generated X-ray images. The irradiation control unit identifies, based on the detected position of the predetermined target, a region in which the predetermined target can be visualized in the X-ray images, and performs control to reduce an X-ray irradiation dose to a region other than the identified region.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: May 7, 2019
    Assignee: Toshiba Medical Systems Corporation
    Inventors: Yoshiaki Iijima, Ryoichi Nagae, Yasuto Hayatsu, Kunio Shiraishi, Yoshinori Shimizu, Yuichiro Watanabe
  • Patent number: 10274438
    Abstract: A method for observing deformation of an elastic material including rubber or elastomer, includes a first step of capturing projection images of at least a part of the elastic material from directions perpendicular to an arbitrary axis of the elastic material and a second step of constructing a three-dimensional image of the elastic material from the projection images. The first step includes deforming the elastic material in predetermined constant cycles, outputting capture signals at the same time points of the predetermined constant cycles, and capturing the projection images based on the respective capture signals.
    Type: Grant
    Filed: November 6, 2014
    Date of Patent: April 30, 2019
    Assignee: SUMITOMO RUBBER INDUSTRIES, LTD.
    Inventors: Ryo Mashita, Hiroyuki Kishimoto
  • Patent number: 10271802
    Abstract: A mobile x-ray apparatus having wheels for manual transport and an x-ray tube support attached to a base. The apparatus may be rolled by pushing and/or pulling the base, the support, or the x-ray tube. A brake is associated with at least one of the wheels to prevent rolling the apparatus when manually positioning the x-ray tube. The brake may be engaged from an actuator on the tube head, on the support, or on the base.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: April 30, 2019
    Assignee: Carestream Health, Inc.
    Inventors: William C. Wendlandt, James H. Ogle
  • Patent number: 10258298
    Abstract: A medical image scanning system includes a top plate on which an object is placed, a drive screw shaft, and a fall prevention unit. The fall prevention unit includes a load support nut that is threadedly engaged with the drive screw shaft and to which the load of the top plate is applied; a fall prevention nut that is arranged below the load support nut and is threadedly engaged with the drive screw shaft; a rotation prevention mechanism that prevents the rotation of the load support nut; and a detent mechanism that performs the turning stop of the fall prevention nut and releases the turning stop of the fall prevention nut when the threaded engagement between the drive screw shaft and the load support nut is disconnected.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: April 16, 2019
    Assignee: HITACHI, LTD.
    Inventors: Yuta Inoue, Mikio Mochitate, Kenya Sakanaka
  • Patent number: 10222709
    Abstract: A pattern is applied to a substrate by a lithographic apparatus as part of a lithographic manufacturing system. Structures are produced with feature sizes less than 10 nm. A target includes one or more gratings with a direction of periodicity. A detector captures one or more diffraction spectra, to implement small angle X-ray scattering metrology. One or more properties, such as linewidth (CD), are calculated from the captured spectra for example by reconstruction. The irradiation direction defines a non-zero polar angle relative to a direction normal to the substrate and defines a non-zero azimuthal angle relative to the direction of periodicity, when projected onto a plane of the substrate. By selecting a suitable azimuthal angle, the diffraction efficiency of the target can be enhanced by a large factor. This allows measurement time to be reduced significantly compared with known techniques.
    Type: Grant
    Filed: February 2, 2016
    Date of Patent: March 5, 2019
    Assignee: ASML Netherlands B.V.
    Inventor: Richard Quintanilha
  • Patent number: 10206633
    Abstract: An embodiment of the invention relates to a method for planning support for a computer tomography recording of an examination object by means of a computer tomography device, including the following steps: recording a 2-D overview image (topogram) of the examination object by means of the computer tomography device, determining position-dependent information by means of the overview image, forwarding the information to a projection device, and correct positioned displaying the information on the surface of the examination object.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: February 19, 2019
    Assignee: Siemens Aktiengesellschaft
    Inventors: Bastian Rackow, Stefan Reichelt, Carsten Thierfelder
  • Patent number: 10167155
    Abstract: A system includes a component inspection system having a radiation source configured to generate radiation and a radiation detector configured to detect the radiation after the radiation passes through components to be inspected. The system also includes a fixture configured to receive multiple reels that are each configured to receive a tape in or on which the components are located. The fixture includes a base configured to be secured to a support, a shaft, one or more motors mounted to the shaft and configured to rotate the reels, and one or more joints coupling the shaft and base. The one or more joints are configured to allow (i) rotation of the shaft about a longitudinal axis of the shaft to change an orientation of the shaft with respect to the base and (ii) rotation of the shaft to change a direction at which the shaft extends away from the base.
    Type: Grant
    Filed: August 10, 2015
    Date of Patent: January 1, 2019
    Assignee: Raytheon Company
    Inventors: Stephen T. Fasolino, Jason L. Wheeler, Joshua Ng
  • Patent number: 10117632
    Abstract: A portable medical imaging system includes a movable station, a detector panel, an X-ray beam transmitter, and a controller. The movable station includes a c-arm having a first end and a second end that are movable along an arc relative to the movable station. The detector panel is attached to the first end of the movable c-arm. The X-ray beam transmitter faces the detector panel and is attached to the second end of the c-arm. The X-ray beam transmitter contains a collimator that forms a window through which an X-ray beam is transmitted toward the detector panel. The collimator is configured to move the widow in a lateral direction across a direction of the arc. The controller is configured to control movement of the window by the collimator to steer the X-ray beam laterally across the detector panel.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: November 6, 2018
    Assignee: Globus Medical, Inc.
    Inventors: Norbert Johnson, Robert Stevens, Hisham Salem, Yuan Cheng
  • Patent number: 10082597
    Abstract: A mobile inspection system comprises: a stand; a ray source mounted to the stand and configured to generate a ray; a substantially inverted L-shaped detector beam comprising a horizontal detector beam portion and an upright detector beam portion connected to one end of the horizontal detector beam portion; a plurality of detectors configured to receive the ray emitted from the ray source, the plurality of detectors being disposed to at least one of the horizontal detector beam portion and the upright detector beam portion; and a drive device disposed to the stand, connected with the other end of the horizontal detector beam portion, and configured to drive the detector beam to rotate around an upright axis, wherein the ray source and the detector beam rotate synchronously.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: September 25, 2018
    Assignee: Nuctech Company Limited
    Inventors: Quanwei Song, Kejin Gao, Xuping Fan, Liwei Song, Jianmin Li, Shangmin Sun, Yulan Li, Chunguang Zong, Jinning Liang, Sheng Tang
  • Patent number: 10078060
    Abstract: A handheld instrument and a mobile device for x-ray fluorescence analysis has a housing and a handle, having an x-ray fluorescence measurement device by which a primary beam is directed onto a measurement surface of a measurement object through an outlet window, a detector which detects the secondary radiation emitted by the measurement surface, and a data processing device which controls a display. The outlet window on a front-side end of a first housing section and a positioning element is on the first housing section. A support element is on a further housing section, at a distance to the outlet window. The handheld instrument is aligned with respect to the measurement surface after the positioning on the measurement surface by the positioning element. The support element is positioned autonomously with respect to the measurement surface in a measurement position.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: September 18, 2018
    Assignee: Helmut Fischer GmbH Institut für Elektronik und Messtechnik
    Inventors: Udo Geier, Bernhard Nensel
  • Patent number: 10045746
    Abstract: In a radiation image processing apparatus, method, and program, performing image processing based on scattered radiation, such as scattered radiation elimination processing, accurately by taking into account the influence of scattered radiation from an area adjacent to a processing target area. For this purpose, performing image processing on a radiation image captured by applying radiation to a subject based on scattered radiation generated by the subject. In this case, a processing target area which is the processing target in the radiation image is added with another area different from the processing target area in the radiation image. Then, the image processing based on scattered radiation is performed on the processing target area using the another area and the processing target area.
    Type: Grant
    Filed: March 4, 2015
    Date of Patent: August 14, 2018
    Assignee: FUJIFILM Corporation
    Inventors: Takashi Tajima, Jun Enomoto, Yasufumi Oda, Takeshi Kuwabara, Daiki Harada, Yuichi Hosoi, Noriaki Ida, Naoyuki Nishino, Haruyasu Nakatsugawa
  • Patent number: 10034652
    Abstract: A computed tomography (CT) apparatus includes an X-ray source configured to generate X-rays; and a detector which is configured to detect the X-rays radiated by the X-ray source, and includes a counting detection region configured to generate X-ray data corresponding to the detected X-rays according to a photon counting method, and an integrative detection region which is configured to generate the X-ray data corresponding to the detected X-rays according to a charge integration method, and is formed on an outer portion of the counting detection region with respect to a rotation axis of a gantry.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: July 31, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Min Kook Cho, Byung Sun Choi
  • Patent number: 10014149
    Abstract: In an X-ray radiation source, a counter wall made of alkali-containing glass, out of walls of a housing of an X-ray tube, is sandwiched between a filament and an electric field control electrode to each of which a negative high voltage is applied. This configuration prevents an electric field from being generated in the counter wall and thus suppresses precipitation of alkali ions from the glass. Therefore, it prevents change in potential relationship between electrodes at different potentials such as the filament, grid, and target and enables stable operation to be maintained, without occurrence of a trouble of failure in maintaining a desired X-ray amount.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: July 3, 2018
    Assignees: FUTABA CORPORATION, HAMAMATSU PHOTONICS K.K.
    Inventors: Tatsuya Nakamura, Norimasa Kosugi, Naoki Okumura, Yoshitaka Sato, Akira Matsumoto, Yoshihisa Marushima, Kazuhito Nakamura
  • Patent number: 10012600
    Abstract: An X-ray apparatus includes an X-ray source configured to radiate X-rays onto an object, an X-ray detector configured to detect X-rays having penetrated through the object among the radiated X-rays and obtain pieces of raw data of different energy bands based on the detected X-rays, a raw image obtainer configured to obtain raw images in which different materials constituting the object are enhanced using the pieces of raw data, and an image processor configured to process the raw images and generate an X-ray image of the object based on the processed raw images.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: July 3, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Dong-Goo Kang, Young Hun Sung, Kye Young Jeong, Jiyoung Choi
  • Patent number: 9989483
    Abstract: An imaging system for generating three dimensional image data using X-ray backscattering from one side of a structure is provided. The imaging system includes at least one X-ray source, at least one rotating collimator coupled to the at least one X-ray source, an X-ray detector, and a controller coupled to the at least one X-ray source, the at least one rotating collimator and the X-ray detector. The controller is configured to emit X-rays from the at least one X-ray source through the at least one rotating collimator towards the one side of the structure. Additionally, the controller is configured to detect backscattered X-rays from the one side of the structure, using the X-ray detector, at a plurality of depths within the structure. Additionally, the controller is configured to generate three dimensional image data of the structure based on the detected backscattered X-rays.
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: June 5, 2018
    Assignee: The Boeing Company
    Inventors: Gary E. Georgeson, Morteza Safai
  • Patent number: 9972473
    Abstract: In an envelope rotation type X-ray tube apparatus, a cathode releases electrons, and the electrons released from the cathode are deflected by deflection coils. A target generates X-rays by being bombarded with the electrons deflected by the deflection coils. Here, a shield ring, while allowing passage through a ring interior of those of the electrons deflected by the deflection coils that head for an area of the target set beforehand, blocks electrons heading outward of the area. Consequently, the electrons are inhibited from bombarding on areas of the target outward of the area and an envelope. This can prevent damage to the envelope.
    Type: Grant
    Filed: December 3, 2013
    Date of Patent: May 15, 2018
    Assignee: SHIMADZU CORPORATION
    Inventor: Tatsuya Yoshizawa
  • Patent number: 9968315
    Abstract: A housing of an electronic cassette includes an inclined surface. The inclined is formed between a side surface and a rear surface of the housing and inclined relative to the side surface and the rear surface. The inclined surface is provided with indicators for displaying a center position of each side of an imaging area and operation conditions of the electronic cassette. Each of the indicators consists of a light source and a display window through which light from the light source is emitted to the outside. The display window is formed on the inclined surface. Since the display window is formed on the inclined surface, the display window is not blocked by an outer grid.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: May 15, 2018
    Assignee: FUJIFILM Corporation
    Inventors: Ryosuke Ogura, Toshiyuki Nabeta, Jun Enomoto
  • Patent number: 9966159
    Abstract: An apparatus comprising a variable aperture for controlling electromagnetic radiation and related systems and methods are described. In one aspect, a variable aperture to control electromagnetic radiation comprises a first substrate, a second substrate, an attenuation fluid, at least one charging electrode, and at least one displacing electrode. The second substrate is located opposite the first substrate and spaced apart from the first substrate to form a gap between the first substrate and the second substrate. The attenuation fluid is located in the gap and configured to absorb electromagnetic radiation of a predetermined wavelength. The at least one charging electrode is in electrical contact with the attentional fluid. The at least one displacing electrode is located on a surface of the first substrate facing the gap or on a surface of the second substrate facing the gap.
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: May 8, 2018
    Assignee: TELEDYNE DALSA, INC.
    Inventors: Anton van Arendonk, Andrey Lomako
  • Patent number: 9955931
    Abstract: A housing of an electronic cassette has an inclined surface which is formed between a side surface and a rear surface thereof and inclined relative to the side surface and the rear surface. An antenna opening through which a radio wave is transmitted is formed on the inclined surface. Since the antenna opening is formed on the inclined surface, the antenna opening is not blocked by a rear plate of a holder of an upright radiographic stand or a supine radiographic stand, and the antenna opening is not blocked by a side panel of an outer grid. Both in the case where the electronic cassette is set to the holder and in the case where the outer grid is attached to the electronic cassette, it is possible to perform stable wireless communication.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: May 1, 2018
    Assignee: FUJIFILM Corporation
    Inventors: Akihito Bettouyashiki, Makoto Kitada, Jun Enomoto
  • Patent number: 9952147
    Abstract: The invention is directed to a non-destructive method of detecting whether a coating or deposit (30, 34) of (a) SiOxCy or SiNxCy and/or (b) of SiOx is present on or near a surface of an article (12), such as a disposable thermoplastic medical article. The method includes impinging infrared light (216) having a wave number in at least a portion of a desired range onto at least a first surface being examined for the presence of the one or more coatings or deposits. At least a portion (224) of the infrared light impinged on the first surface is collected (at 222) and the response output, which may include for example the maximum intensity and/or peak area of the collected infrared light at an infrared spectroscopy peak, is used to indicate the presence of the one or more coatings or deposits.
    Type: Grant
    Filed: September 12, 2014
    Date of Patent: April 24, 2018
    Assignee: SIO2 MEDICAL PRODUCTS, INC.
    Inventors: Thomas E. Fisk, Kevin Turney, Robert L. Browning