Patents Examined by Dominic J Bologna
  • Patent number: 11821848
    Abstract: Described herein are a low-cost, non-destructive, and contact-free intelligent inspection system that is field-deployable on a geometry car, high-rail vehicle, or other types of track inspection platforms to identify broken railway/railroad spikes in real-time.
    Type: Grant
    Filed: May 27, 2021
    Date of Patent: November 21, 2023
    Assignee: University of South Carolina
    Inventor: Yu Qian
  • Patent number: 11815405
    Abstract: A photonic device has a substrate with one or more optical resonators having a first resonant frequency response relative to temperature and a different second resonant frequency response relative to temperature. A first waveguide optically couples a first light beam having a first frequency to a first optical resonator and a second waveguide optically couples a second light beam having a second frequency to a second optical resonator. An optical shifter may shift an optical characteristic of the second light beam. A detector converts output light from the photonic device into an electric signal having a characteristic indicative of a physical condition, such as temperature, of the photonic device. In some cases, output light from the one or more optical resonators is combined and a temperature of the photonic device is determined from a beat frequency in the combined light. One or more multimode optical resonators may be used.
    Type: Grant
    Filed: June 3, 2021
    Date of Patent: November 14, 2023
    Assignee: Fluke Corporation
    Inventors: Mohammad Amin Tadayon, Kevin R. Williamson
  • Patent number: 11815398
    Abstract: An analyte detection apparatus, includes a radiation source for irradiating a sample; a receiver, to receive an optical Raman spectrum of radiation transmitted back from the sample in response to the received radiation from the source, wherein the receiver includes a plurality of different types of analysis device each arranged to receive a selected part of the received optical spectrum transmitted back from the sample.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: November 14, 2023
    Assignee: RSP SYSTEMS A/S
    Inventor: Stefan Ovesen Banke
  • Patent number: 11802826
    Abstract: A measurement apparatus includes: a flow path device including a first flow path in which first liquid including particles to be measured is flowed, and which includes a measurement region measured with an optical sensor, a second flow path in which second liquid for comparison is flowed, and which includes a comparison region measured with the optical sensor, and a calibration region for calibrating the optical sensor; an arm-like member in which the optical sensor is disposed in a first end, and in which a drive shaft is disposed in a second end; and a rotary drive actuator configured to rotationally drive the arm-like member in a predetermined range, wherein each of the measurement region, the comparison region, and the calibration region is disposed as a region including a position on a circumference along which the optical sensor moves in accordance with a rotary drive of the arm-like member.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: October 31, 2023
    Assignee: KYOCERA Corporation
    Inventor: Yuji Masuda
  • Patent number: 11802990
    Abstract: An optical system that obtains characteristics of a transmission path in atmosphere, when laser light propagates through this transmission path, at a place separated from this transmission path and before the propagation, and corrects wavefront of the laser light based on the obtained characteristics, is provided. The optical system is provided with an irradiation device and an atmospheric characteristics obtaining system. The irradiation device irradiates an external target with light via a first optical path. The atmospheric characteristics obtaining system is arranged in a second optical path separated from the first optical path and obtains characteristics of atmospheric environment in the first optical path with respect to the irradiated light. The irradiation device is provided with wavefront correction optics. The wavefront correction optics correct wavefront of the irradiated light based on the obtained characteristics.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: October 31, 2023
    Assignees: MITSUBISHI HEAVY INDUSTRIES, LTD., RIKEN, INSTITUTE FOR LASER TECHNOLOGY
    Inventors: Masashi Iwashimizu, Hiroyuki Daigo, Shingo Nishikata, Kazunori Masukawa, Atsushi Ochiai, Toshikazu Ebisuzaki, Satoshi Wada, Yoshiyuki Takizawa, Masayuki Maruyama, Shinji Motokoshi
  • Patent number: 11802761
    Abstract: Described is a perforated disk for selecting light for an optical imaging, in particular for an optical imaging in a confocal imaging system. The described perforated disk has an optically absorbing material, which has an absorption coefficient of at least 98%, wherein in the optically absorbing material at least one opening is present, which defines an optical passage through the perforated disk. Preferably, the optically absorbing material contains carbon nanotubes. Furthermore, there is described a (confocal) optical imaging system having such a perforated disk.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: October 31, 2023
    Assignee: SOLARIUS GMBH
    Inventors: Dennis Frank Jansen, Benjamin Stieger
  • Patent number: 11796467
    Abstract: Source light having a range of optical wavelengths is generated. The source light is split into sample light and reference light. The sample light is delivered into a sample, such that it is scattered by the sample, resulting in signal light that exits the sample. The signal light and reference light are combined into an interference light pattern having optical modes. Different subsets of the optical modes of the interference light pattern are respectively detected, and high-bandwidth analog signals respectively corresponding to the different subsets of optical modes of the interference light pattern are output. At least one characteristic is extracted from each of the plurality of high-bandwidth analog signals, and low-bandwidth digital signals respectively comprising the extracted characteristics are output. The sample is analyzed based on the low-bandwidth digital signals.
    Type: Grant
    Filed: June 16, 2021
    Date of Patent: October 24, 2023
    Assignee: HI LLC
    Inventors: Hooman Mohseni, Haowen Ruan
  • Patent number: 11781861
    Abstract: In a surface measurement method, a measurement surface is irradiated with a coherent light beam, reflected light reflected from the measurement surface is projected to a screen to form an optical image; and the optical image is captured by an optical sensor when the screen is continuously moved in one direction when the optical image is captured by the optical sensor.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: October 10, 2023
    Assignee: HITACHI ASTEMO, LTD.
    Inventors: Jeremy Jong, Kazushi Miyata, Shigenobu Maruyama
  • Patent number: 11781969
    Abstract: A particle concentration measurement system includes a first window and a second window in a housing. The first window and the second window respectively define a first end and a second end of an interaction region between the first window and the second window. The system also includes a particle-laden gas inlet through a wall of the housing between the first window and the second window. The particle-laden gas inlet introduces particle-laden gas from an environment that includes particles mixed with other materials into the interaction region. A first set of clean gas inlets through the wall of the housing are at different radial positions of the housing and at a first axial location of the housing, and a second set of clean gas inlets through the wall of the housing are at different radial positions of the housing and at a second axial location of the housing.
    Type: Grant
    Filed: November 18, 2020
    Date of Patent: October 10, 2023
    Assignee: KIDDE TECHNOLOGIES, INC.
    Inventors: Eli Baldwin, Mark P. Fazzio
  • Patent number: 11771321
    Abstract: An exemplary system, method, and computer-accessible medium for generating an image(s) of an three-dimensional anatomical flow map(s) can include receiving an optical coherence tomography (“OCT”) signal(s), splitting the OCT signal(s) into a plurality of subspectra, averaging the plurality of subspectra, and generating the image(s) of the three-dimensional anatomical flow map(s) based on the averaged subspectra. The OCT signal(s) can be a swept-source OCT signal. The OCT signal(s) can be split into the subspectra based on a Hamming window. The Hamming distance window can be optimized to minimize a nearest side lobe for each of the subspectra. A position of at least one of the subspectra can be shifted prior to averaging the subspectra. The position of all but one of the subspectra can be shifted prior to averaging the subspectra.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: October 3, 2023
    Assignee: The Research Foundation for SUNY
    Inventors: Yingtian Pan, Wei Chen, Congwu Du
  • Patent number: 11774360
    Abstract: A method for determining relative degrees of reflectance of a measurement surface, having the method steps of applying measurement radiation to the measurement surface, such that a measurement spot is produced on the management surface, moving the measurement spot along at least a first straight measurement spot path, over the measurement surface in accordance with a first path movement and along a second straight measurement spot path with a second path movement, recording a first and second image sets of a plurality of locally resolved images of the measurement surface during the first path movement and the second path movement. An evaluation is carried out at intersection points, whose location points on the management surface are defined by evaluation lines, wherein a first group of straight evaluation lines within the first measurement path region and a second group of straight evaluation lines within the second measurement path region are predefined and/or determined.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: October 3, 2023
    Assignee: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V.
    Inventors: Gregor Bern, Peter Schöttl, Anna Heimsath, Peter Nitz
  • Patent number: 11761876
    Abstract: A particulate matter (PM) sensor comprises a substrate forming a cavity (5), the substrate comprising a semiconductor chip (4), and a light source (1) arranged in the cavity (5). The light source (1) is adapted to emit a light beam (7). The light beam (7) forms a detection volume (8) for particulate matter (9) outside the cavity (5). Optionally, the particulate matter sensor comprises an optical element (2) delimiting the cavity (5) at one end. The optical element (2) is configured to shape the light beam (7). Further, the particulate matter sensor comprises at least one photodetector (3) that is integrated into a surface of the semiconductor chip (4). The surface into which the at least one photodetector (3) is integrated faces the detection volume (8). The at least one photodetector (3) is adapted to detect light (10) scattered by particulate matter (9) in the detection volume (8).
    Type: Grant
    Filed: October 21, 2022
    Date of Patent: September 19, 2023
    Assignee: Sensirion AG
    Inventors: Frank Gütle, Lukas Hoppenau, Lukas Rüthemann, David Pustan, Werner Hunziker
  • Patent number: 11762180
    Abstract: A light sheet imaging system, such as a light sheet microscope, comprises an illumination arrangement for generating a light sheet for three-photon excitation of a fluorescent sample, and a fluorescence collection arrangement for collecting fluorescence generated in the sample as a result of three-photon excitation by the light sheet. The light sheet may be a non-diffractive, propagation-invariant light sheet. The light sheet may be formed from and/or comprise a Bessel beam. A method of light sheet imaging comprises using a light sheet for three-photon excitation of a fluorescent sample, and collecting fluorescence generated in the sample as a result of three-photon excitation of the sample by the light sheet. Such a method may be used for light sheet microscopy.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: September 19, 2023
    Assignee: UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS
    Inventor: Kishan Dholakia
  • Patent number: 11761756
    Abstract: Disclosed are methods and devices for simultaneously detecting surface shapes and thickness distribution of inner and outer walls of a thin-walled rotating body. According to the invention, a chromatic confocal senor head is driven by a bottom rotary table, a main measuring head rotary table and a linear motion shaft mover to perform copy scanning along a surface of a thin-walled shell-type rotating body, so that the detection of the surface shapes and thickness distribution of the inner and outer walls of the thin-walled shell-type rotating body can be realized at the same time. By the method, mechanical interference caused by arranging a measuring head in the thin-walled shell-type rotating body can be avoided, and coordinate consistency of surface shape measurement data and thickness distribution data of the inner and outer walls in a three-dimensional space can be ensured, thus ensuring the overall measurement precision; and meanwhile.
    Type: Grant
    Filed: March 31, 2023
    Date of Patent: September 19, 2023
    Assignee: ZHEJIANG UNIVERSITY
    Inventors: Bingfeng Ju, Wenhao Zhang, Wule Zhu, Yuanliu Chen, Anyu Sun, Kaimin Guan
  • Patent number: 11761854
    Abstract: A particle sensor for detecting particles in a flow of a measuring gas for detecting soot particles in an exhaust gas channel of a burner or of an internal combustion engine. The particle sensor includes a device for generating or for supplying laser light, a device for focusing laser light, and a device for detecting or transferring thermal radiation. The particle sensor includes at least one optical access, which separates an area exposed to the measuring gas from an area facing away from the measuring gas not exposed to the measuring gas, the device for generating or supplying laser light and/or the device for detecting or for transferring thermal radiation being situated in the area facing away from the measuring gas, wherein the particle sensor removes a sub-flow from the measuring gas flow and supplies it to the laser focus and further fluidically shields the optical access from the sub-flow.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: September 19, 2023
    Assignee: Robert Bosch GmbH
    Inventors: Enno Baars, Johannes Weber, Martin Buchholz, Radoslav Rusanov
  • Patent number: 11754389
    Abstract: An estimation method includes projecting a pattern image onto an object via a zoom lens, generating imaging data by capturing the pattern image on the object, estimating, based on the imaging data, a position of a principal point of the zoom lens during the projection of the pattern image, and estimating, based on a first characteristic value representing a characteristic of the zoom lens at time when the principal point of the zoom lens is present in a first position and a second characteristic value representing a characteristic of the zoom lens at time when the principal point of the zoom lens is present in a second position, a characteristic value representing a characteristic of the zoom lens at time when the principal point of the zoom lens is present in the estimated position.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: September 12, 2023
    Assignee: SEIKO EPSON CORPORATION
    Inventor: Taisuke Yamauchi
  • Patent number: 11754484
    Abstract: A system comprises an optical air data system that measures aerosol and molecular scattering of light, and an optical instrument that measures aerosol and/or molecular scattering of light. A processor receives data from the air data system and from the optical instrument. The processor performs one or more signal analysis and data fusion methods comprising: (a) determining aerosol and/or molecular concentration from the received data, modifying a data analysis algorithm to optimize any remaining unknown parameters, and outputting enhanced air data parameters; (b) determining aerosol concentration from the received data, dynamically optimizing hardware settings in the air data system to enhance a signal level and avoid system saturation, and outputting enhanced air data parameters; or (c) determining aerosol and/or molecular concentration from the received data, estimating a confidence level of an air data algorithm, verifying optical health of the air data system, and reporting the optical health to a user.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: September 12, 2023
    Assignee: Honeywell International Inc.
    Inventors: Xiao Zhu Fan, Timothy A. Peterson, Lee R. Wienkes, Matthew Wiebold
  • Patent number: 11754423
    Abstract: An intelligent skin based on a small-size distributed optical fiber sensing array. The intelligent skin includes an epidermis sensing array, an embedded optical fiber sensing array, a data collection system module, and a data processing mode recognition module. The body of the intelligent skin is made of a flexible material. The embedded optical fiber sensing array in an epidermis includes a plurality of all-fiber interferomatic sensing arrays. The data collection system module includes a broadband light source, an optical combiner/splitter, an optical path change-over switch, a signal detector and a computer. The data processing mode recognition module includes mode recognition and training of a neural network. The intelligent skin further includes an external display software used to perform intelligent sensing recognition for sense of touch, position, shape, and ingredient, temperature and vibration of an object and so on.
    Type: Grant
    Filed: August 11, 2021
    Date of Patent: September 12, 2023
    Assignee: SHANDONG UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Lijun Li, Tianzong Xu, Qian Ma, Zhaochuan Zhang, Xiaolei Liu, Jiajun Shen
  • Patent number: 11754493
    Abstract: A broadband light source device in a biochemical analyzing device, and facilitates maintenance thereof, including an LED substrate that is provided with an LED chip generating a light beam having a first wavelength band and including a fluorescent substance in the light beam having a first wavelength band and that is provided with an LED chip generating a light beam having a second wavelength band, in which the fluorescent substance includes at least alumina and at least one of Fe, Cr, Bi, Tl, Ce, Tb, Eu, and Mn and is produced by calcining a raw material that contains sodium at 6.1 to 15.9 wt. % in the whole raw material. The broadband light source device further includes an optical system including a light pipe that color-mixes the light beam passing through the fluorescent substance of the LED chip and the light beam emitted from the LED chip, and a flat dichroic prism.
    Type: Grant
    Filed: October 9, 2019
    Date of Patent: September 12, 2023
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Tomoto Kawamura, Takahiro Ando, Shin Imamura, Masaaki Komatsu, Yuya Matsuoka, Takeshi Ishida, Sakuichiro Adachi
  • Patent number: 11740126
    Abstract: Methods and systems for measuring one or more properties of a sample are disclosed. The methods and systems can include multiplexing measurements of signals associated with a plurality of wavelengths without adding any signal independent noise and without increasing the total measurement time. One or more levels of encoding, where, in some examples, a level of encoding can be nested within one or more other levels of encoding. Multiplexing can include wavelength, position, and detector state multiplexing. In some examples, SNR can be enhanced by grouping together one or more signals based on one or more properties including, but not limited to, signal intensity, drift properties, optical power detected, wavelength, location within one or more components, material properties of the light sources, and electrical power. In some examples, the system can be configured for optimizing the conditions of each group individually based on the properties of a given group.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: August 29, 2023
    Inventors: Trent D. Ridder, Mark Alan Arbore, Gary Shambat, Robert Chen, David I. Simon, Miikka M. Kangas