Patents Examined by Frances Tischler
  • Patent number: 11505738
    Abstract: The rapid reaction of hydrofluoric acid with siliceous materials can make it difficult to increase the permeability of subterranean formations containing siliceous minerals.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: November 22, 2022
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Aaron M. Beuterbaugh, Enrique Antonio Reyes
  • Patent number: 11499008
    Abstract: An end and monomer functionalized poly(propylene fumarate) polymer and methods for preparing this polymer, comprising isomerized residue of a maleic anhydride monomer and a functionalized propylene oxide monomer according to the formula: where n is an integer from more than 1 to 100; R is the residue of an initiating alcohol having a propargyl, norbornene, ketone or benzyl functional group; and R? is a second functional group selected from the group consisting of propargyl groups, 2-nitrophenyl groups, and combinations thereof are disclosed. The end and monomer functional groups allow for post-polymerization modification with bioactive materials using “click” chemistries and use of the polymer for a variety of applications in medical fields, including, for example, 3-D printed polymer scaffold.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: November 15, 2022
    Assignee: University of Akron
    Inventors: Matthew Becker, James A. Wilson, Yusheng Chen
  • Patent number: 11492443
    Abstract: Provided are integrated processes for the conversion of ethylene oxide to polypropiolactone. System for the production of polypropiolactone are also provided.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: November 8, 2022
    Assignee: Novomer, Inc.
    Inventors: Jay J. Farmer, Peter Galebach, Kyle Sherry, Sadesh H. Sookraj
  • Patent number: 11485893
    Abstract: Heavy fluids are made from calcium bromide and at least one hydrogen bond donor such as a low molecular weight polyol or an organic acid. The combination of a hydrogen bond donor and calcium bromide as a hydrogen bond acceptor in an appropriate molar ratio forms a higher density clear completion fluid at a low temperature not otherwise obtainable with heavy aqueous solutions of calcium bromide such as are used in oilfield wells. A method of making the fluid comprises mixing calcium bromide with the polyol(s) in the presence of water and then reducing the water content, thus forming a heavy fluid. A crystallization inhibitor such as nitrilotriacetamide or a particulate silicate is included in the formulation. When the heavy fluid “freezes,” its physical form is somewhat amorphous and pumpable rather than crystalline. The heavy fluid is useful as a drilling fluid as well as a completion fluid and for other purposes in oil recovery processes where extreme density is beneficial.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: November 1, 2022
    Assignee: Highland Fluid Technology, Inc.
    Inventor: Kevin W. Smith
  • Patent number: 11479639
    Abstract: Processes for making a fluid conduits and fluid conduits made thereby are disclosed. The fluid conduits include a mono-layer formed of at least 80 wt %, based on total weight of the mono-layer, of a thermoplastic elastomer in an amount of at least 80 wt % with respect to the total weight of the mono-layer. The thermoplastic elastomer is preferably a block copolymer elastomer formed of hard segments (e.g., polyesters, polyamides and/or polyurethanes) and soft segments (e.g., aliphatic polyethers, aliphatic polyesters and/or aliphatic polycarbonates) and exhibits a melt flow rate measured at 230° C. under a load of 10 kg (MFR 230° C./10 kg), according to ISO1133 (2011) of at most 40 g/10 min and having a heat resistance of at least 250 hours at 175° C. at which the elongation at break remains at least 100% as measured according to ISO 527 with a test speed of 50 mm/min.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: October 25, 2022
    Assignee: DSM IP ASSETS B.V.
    Inventors: Ellen Van Hemelrijck, Marco Van Moll, Michel Baseotto
  • Patent number: 11473009
    Abstract: Compositions and methods for treating kerogen in a subterranean formation by generating bromine and other halogens in situ in a subterranean formation. In some implementations, the generation of the bromine or halogen is delayed. This can occur, for example, by the decomposition of precursors, a chemical reaction, the encapsulation of precursors or reactants, or a combination of these approaches.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: October 18, 2022
    Assignee: Saudi Arabian Oil Company
    Inventors: Desmond Schipper, Katherine Leigh Hull, Younane N. Abousleiman
  • Patent number: 11473001
    Abstract: Compositions and methods for treating kerogen in a subterranean formation by generating bromine and other halogens in situ in a subterranean formation. In some implementations, the generation of the bromine or halogen is delayed. This can occur, for example, by the decomposition of precursors, a chemical reaction, the encapsulation of precursors or reactants, or a combination of these approaches.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: October 18, 2022
    Assignee: Saudi Arabian Oil Company
    Inventors: Desmond Schipper, Katherine Leigh Hull, Younane N. Abousleiman
  • Patent number: 11466120
    Abstract: A medical material comprising film obtained from a polyester wherein the polyester has a weight average molecular weight of 1,250,000 or greater determined by gel permeation chromatography calibrated with polystyrene standards. The polyester comprises a 3-hydroxybutyrate unit and a 4-hydroxybutyrate unit as polymerization units, and proportion of the 4-hydroxybutyrate unit relative to all monomer units is from 14 mol % to 40 mol %. The polyester film is useful for medical apparatus, packaging material for food, plastic sheet for agriculture, flowerpots for seedings, and sheets for construction and engineering.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: October 11, 2022
    Assignee: MITSUBISHI GAS CHEMICAL COMPANY, INC.
    Inventor: Akira Maehara
  • Patent number: 11466179
    Abstract: A polyester pressure-sensitive adhesive composition is provided including a polyester resin having a predetermined amount of a structural unit derived from a hydrogenated polybutadiene structure-containing compound, or a polyester resin having a structural unit derived from a hydrogenated polybutadiene structure-containing compound and a predetermined amount of a structural unit derived from an aromatic ring structure-containing compound. The polyester pressure-sensitive adhesive composition has superior adhesion to a polyolefin base material and is highly transparency.
    Type: Grant
    Filed: March 17, 2020
    Date of Patent: October 11, 2022
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventor: Kento Sakamoto
  • Patent number: 11459423
    Abstract: A process for polymerizing ?-butyrolactone that includes contacting racemic ?-butyrolactone or an enantiomer thereof with a catalyst/initiator system which includes a rare earth metal, a chiral ligand, at least one nucleophilic ligand, optionally at least one solvent ligand, and optionally an alkali based co-catalyst. The chiral ligand is an enantiomer of a unit of formula I Each Rz independently is substituted or unsubstituted linear C1-C20 alkyl, or substituted or unsubstituted branched, or cyclic C3-C20 alkyl, substituted or unsubstituted C6-C20 aryl, substituted or unsubstituted C5-C20 heteroaryl, or halogen. Each Ra independently is H, Me+, (MeZ)+, wherein Z is a charge equalizing anion, or wherein two Ra together are alkaline earth metal, wherein Me+ is alkali metal or alkaline earth metal.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: October 4, 2022
    Assignee: Technische Universität München
    Inventors: Friederike Adams, Bernhard Rieger
  • Patent number: 11453737
    Abstract: Polycarbonate block copolymers are provided, which have: (A) a polyester block of chemical formula 1; and (B) a polycarbonate block derived from a dihydric phenol of chemical formula 3 compound and phosgene. The copolymers may be prepared by (1) polymerizing ester oligomers to form a compound of chemical formula 1; and (2) copolymerizing the ester oligomer obtained in (1) with a polycarbonate oligomer prepared from a dihydric phenol compound of chemical formula 3 and phosgene, in the presence of a polymerization catalyst. The block copolymer may have a viscosity average molecular weight (Mv) of 10,000 to 200,000.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: September 27, 2022
    Assignee: SAMYANG CORPORATION
    Inventors: Kyung Moo Shin, Jin Sik Choi, Young Do Kwon
  • Patent number: 11447617
    Abstract: A process for recycling thermoplastic polymer material to produce polymer pre-form, the process comprising the steps of pre-treating a polymer material for example by separating, sorting, cleaning and/or shaping; shredding the pre-treated polymer to produce polymer flakes; and processing the polymer material to produce a pre-form, characterised in that prior to the step (iii) of producing the pre-form, the polymer flakes are compacted to form pellets.
    Type: Grant
    Filed: November 9, 2020
    Date of Patent: September 20, 2022
    Assignee: LOGOPLASTE INNOVATION LAB LDA
    Inventor: Vitor Vila Verde
  • Patent number: 11447601
    Abstract: Calendered films or sheets obtained from a composition comprising at least one polyester which has the L* color value of greater than 90 and comprises terephthalic acid residues, optional aromatic and/or aliphatic dicarboxylic acid residues having up to 20 carbon atoms; glycol component comprising 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues and ethylene glycol residues; a catalyst/stabilizer component which comprises titanium atoms, manganese atoms, phosphorous atoms; fillers; release additives and does not comprises tin atoms. Calendered films or sheets can be used in a wide range of applications including packaging, pool liners, graphic arts, transaction cards, security cards and others.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: September 20, 2022
    Assignee: Eastman Chemical Company
    Inventors: Marc Alan Strand, Robert Erik Young, James Thomas Goetz, Douglas Weldon Carico, Jr.
  • Patent number: 11439198
    Abstract: Two part sole structures are provided having a first foam component containing a polyolefin resin with a polyurethane resin component adhered to a surface of the first foam component. For example, in some aspects, a sole structure or a portion thereof is provided having a first sole component containing a foam composition and a second sole component adhered to a surface of the first sole component, where the second sole component includes a polyurethane resin. The second sole component is in some aspects printed or extruded onto the surface of the foam. In particular, midsoles including the foams and having an outsole component on the ground facing portion are provided for use in an article of footwear. Methods of making the sole structures are provided, as well as methods of making an article of footwear including one of the sole structures.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: September 13, 2022
    Assignee: NIKE, INC.
    Inventors: Sami M. Fakhouri, Askim Senyurt
  • Patent number: 11434411
    Abstract: A graphene oxide Janus nanosheets relative permeability modifier (RPM) for carbonate formations. The graphene oxide Janus nanosheets RPM may be used to treat a water and hydrocarbon producing carbonate formation to reduce water permeability in the formation and increase the production of hydrocarbons. The graphene oxide Janus nanosheet RPM includes a first side having negatively charged functional groups and a second side having alkyl groups. The alkyl groups may include C8 to C30 alkyls. The negatively charged functional groups may include carboxyl groups, epoxy groups, and hydroxyl groups. Methods of reducing water permeability of a carbonate formation using the graphene oxide Janus nanosheets RPM and methods of manufacturing the graphene oxide Janus nanosheets RPM are also provided.
    Type: Grant
    Filed: June 17, 2020
    Date of Patent: September 6, 2022
    Assignee: Saudi Arabian Oil Company
    Inventors: Jin Huang, Feng Liang, Wengang Li
  • Patent number: 11434406
    Abstract: A method of designing compressible particles for a fluid mixture. The compressible particles are intended to be used for attenuating pressure within a confined volume such as a trapped annulus. Preferably, the compressible particles reside buoyantly within an aqueous fluid, forming a fluid mixture. Each of the compressible particles is fabricated to collapse in response to fluid pressure within the confined volume, and comprises carbon. The particles may each have a porosity of between 5% and 40%, and a compressibility of between 10% and 30%, at 10,000 psi. The particles are tuned to have a buoyancy that is lower than the carrier fluid while still having resiliency.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: September 6, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Ward E. Narhi, Sandeep A. Kibey, David A. Stiles, Michael R. Awe, Adam W. Aylor
  • Patent number: 11427675
    Abstract: A method of manufacturing a molded article by a low shear manufacturing process that includes: placing a solid polyester in a mold having mold surfaces; heating said polyester until it becomes molten; dispersing said molten polyester over said mold surfaces; solidifying said molten polyester to form a solid molded article; and removing said molded article from said mold; where the polyester is obtained by polymerization of dimethylcyclohexane dicarboxylic acid, cyclohexane dimethanol, polytetramethylene ether glycol and branching agent and has a steep melting curve evidenced by a puddling curve slope of ?2 to ?10.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: August 30, 2022
    Assignee: Eastman Chemical Company
    Inventors: Marc Alan Strand, Laura Bauerle Weaver, Robert Erik Young
  • Patent number: 11427769
    Abstract: A method for removing hydrogen sulfide from a hydrocarbon. The method comprises introducing methylmorpholine-N-oxide to a vessel, wherein the vessel comprises the hydrocarbon, and wherein the hydrocarbon comprises hydrogen sulfide; and treating the hydrocarbon by allowing the methylmorpholine-N-oxide to react with the hydrogen sulfide.
    Type: Grant
    Filed: August 4, 2020
    Date of Patent: August 30, 2022
    Assignee: United Laboratories International, LLC
    Inventor: Stephen D. Matza
  • Patent number: 11421076
    Abstract: A heat-resistant, bio-based polycarbonate ester prepared by melt polycondensation of 1,4:3,6-dianhydrohexitol and a carbonate, 1,4-cyclohexanedicarboxylate, or a terephthalate is disclosed. The heat-resistant, bio-based polycarbonate ester includes a repeat unit 1 of Formula 1, a repeat unit 2 of Formula 2, and a repeat unit 3 of Formula 3: The polycarbonate ester has excellent heat resistance, transparency, and processability. A method of producing the polycarbonate includes a step of melt polycondensation of 1,4:3,6-dianhydrohexitol and a carbonate, 1,4-cyclohexanedicarboxylate, or a terephthalate.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: August 23, 2022
    Assignee: SK CHEMICALS CO., LTD.
    Inventor: Kwang Sei Oh
  • Patent number: 11414586
    Abstract: Compositions may contain an oleaginous base fluid, and a branched amidoamine surfactant prepared from the reaction of an alkylene amine or an oligoalkylene amine and a branched acid having a C4 to C24 primary hydrocarbon chain, and having one or more C1 to C24 branches. Methods may include emplacing a wellbore fluid into a wellbore, wherein the wellbore fluid contains an oleaginous base fluid; and a branched amidoamine surfactant prepared from the reaction of an alkylene amine or an oligoalkylene amine and a branched acid having a C4 to C24 primary hydrocarbon chain, and having one or more C1 to C24 branches.
    Type: Grant
    Filed: January 29, 2020
    Date of Patent: August 16, 2022
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Yiyan Chen, Dimitri M. Khramov