Patents Examined by Gregory J. Toatley, Jr.
  • Patent number: 10670755
    Abstract: Systems and methods for refining estimated effects of parameters on amplitudes are disclosed. Exemplary implementations may: (a) obtain ranges of parameter values for individual parameters within a subsurface region of interest; (b) generate a first model of the subsurface region of interest; (c) calculate a synthetic seismogram from the first model to determine corresponding amplitudes; (d) store results of applying the synthetic seismogram; (e) repeat steps (b)-(d) for multiple additional models; (f) obtain a subsurface distribution; (g) apply the subsurface distribution to the multiple models and the corresponding amplitudes; (h) generate a representation; and (i) display the representation.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: June 2, 2020
    Assignee: CHEVRON U.S.A. INC.
    Inventors: Anandaroop Ray, Prasenjit Roy, James Magill, David Bartel, Reynaldo Cardona, Kabilan Krishnamurthy
  • Patent number: 10663331
    Abstract: A magnetic flowmeter includes circuitry for sensing coil current, coil voltage, or coil resistance. Based on the sensed coil current, voltage, or resistance, a digital processor determines whether a power limit or a coil current limit is exceeded and either halts operation until it receives a new configuration with a new coil current setpoint, or determines a new coil current setpoint itself and adjusts the magnetic flowmeter to that new coil current setpoint.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: May 26, 2020
    Assignee: Rosemount Inc.
    Inventors: Scot Ronald Foss, Jared James Dreier, Samuel Ethan Messenger, Kirk Allan Hunter
  • Patent number: 10656210
    Abstract: Problem: To accurately detect the state of charge of a secondary battery regardless of the state of the same. Resolution Means: A secondary battery state detection device 1 for detecting the state of a secondary battery 14 has a measurement unit (voltage sensor 11) for measuring or estimating the open-circuit voltage of the secondary battery, a determination unit (control unit 10) for determining a state of charge by applying the open-circuit voltage measured or estimated by the measurement unit to a correlation equation expressing the relationship between the open-circuit voltage and state of charge, a calculation unit (control unit 10) for calculating a state of charge on the basis of the internal resistance of the secondary battery, and a correction unit (control unit 10) for correcting the correlation equation of the determination unit if the values of the state of charge determined by the determination unit and the state of charge calculated by the calculation unit differ.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: May 19, 2020
    Assignees: FURUKAWA ELECTRIC CO., LTD., FURUKAWA AUTOMOTIVE SYSTEMS INC.
    Inventors: Naoya Takashima, Noriyasu Iwane
  • Patent number: 10641830
    Abstract: A battery's state of charge estimation apparatus will be provided. The battery's state of charge estimation apparatus includes: a charge and discharge current detection unit; a terminal voltage detection unit; an open circuit voltage method state of charge estimation unit for estimating an open circuit voltage of the battery and an open circuit voltage method state of charge; a current integration method state of charge estimation unit for obtaining a current integration method state of charge as a state variable; and an error correction value calculation unit for calculating an error correction value for correcting the current integration method state of charge. The current integration method state of charge estimation unit corrects the current integration method state of charge by using the error correction value.
    Type: Grant
    Filed: April 1, 2013
    Date of Patent: May 5, 2020
    Assignees: Calsonic Kansei Corporation, Keio University
    Inventors: Atsushi Baba, Shuichi Adachi
  • Patent number: 10495676
    Abstract: A method for storing information within a utility meter includes generating in a processing circuit first information regarding a metered quantity delivered to a load corresponding to a first period of time. The method also includes obtaining a first value associated with one of a plurality of predetermined ranges of values in which the first information falls. The method further includes generating in a processing circuit a second value representative of a numerical position of the first information within the one of the plurality of predetermined ranges of values. The first value and the second value are stored in a memory.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: December 3, 2019
    Assignee: Landis+Gyr LLC
    Inventor: Daniel Mondot
  • Patent number: 10496775
    Abstract: A data acquisition system (DAS) includes a plurality of processors comprising at least one first processor and a plurality of second processors. The at least one first processor is configured to receive at least one configuration file and generate at least one measurement data application from the at least one configuration file. The DAS also includes a field-programmable gate array (FPGA) coupled to the plurality of processors. The FPGA is configured to receive the at least one measurement data application and allocate at least a portion of one of the FPGA and at least one second processor of the plurality of second processors to calculate measurement data at least partially based on the at least one measurement data application and an availability of the at least a portion of the FPGA.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: December 3, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Dustin Delany Hess, Adam Anthony Weiss, Jeremy David Fox
  • Patent number: 10491050
    Abstract: Systems, methods, computer-readable storage mediums including computer-readable instructions and/or circuitry for control of transmission to a target device with communicating with one or more sensors in an ad-hoc sensor network may implement operations including, but not limited to: generating electrical power from at least one ambient source via at least one structurally integrated electromagnetic transducer; powering at least one transmitter via the electrical power to wirelessly transmit one or more sensor operation activation signals to one or more sensors; and at least one of powering one or more sensing operations of one or more sensors via the electrical power or charging one or more power storage devices electrically coupled to the one or more sensors via the electrical power.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: November 26, 2019
    Assignee: Elwha LLC
    Inventors: Jesse R. Cheatham, III, Matthew G. Dyor, Peter N. Glaskowsky, Kimberly D. A. Hallman, Roderick A. Hyde, Muriel Y. Ishikawa, Edward K. Y. Jung, Michael F. Koenig, Robert W. Lord, Richard T. Lord, Craig J. Mundie, Nathan P. Myhrvold, Robert C. Petroski, Desney S. Tan, Lowell L. Wood, Jr.
  • Patent number: 10473817
    Abstract: A method is provided of processing data representing a physical system, the method comprising: providing (P2) input data representing differences in the physical system between a first state and a second state of the physical system; and inverting (P5) the input data, or data derived therefrom, in accordance with a parameterized model (PI) of the physical system to obtain differences in the parameters of the model between the first state and the second state, with parameters of the model representing properties of the physical system; wherein the inverting step is performed (P3 to P6) for a plurality of different perturbations (P4) of the parameterized model and/or of the data to obtain a plurality of sets of differences in the parameters of the model; and wherein a statistical analysis (P7) of the plurality of sets of differences is performed to obtain statistical characteristics of the differences in the parameters of the model.
    Type: Grant
    Filed: April 24, 2012
    Date of Patent: November 12, 2019
    Assignee: STATOIL PETROLEUM AS
    Inventor: Ulrich Theune
  • Patent number: 10471213
    Abstract: A supplemental device for attachment to an injection device, the supplemental device is presented having a processor arrangement; and a quantity determiner for determining a quantity of medicament that has been delivered, wherein the quantity determiner has a sensor arranged to detect movement of a drive screw of the injection device during medicament delivery.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: November 12, 2019
    Assignee: Sanofi-Aventis Deutschland GMBH
    Inventors: Michael Schabbach, Bernd Kuhn
  • Patent number: 10466310
    Abstract: A magnetic field sensor arrangement includes a magnetic field sensor element configured to provide a sensor output signal responsive to a magnetic field, wherein the sensor output signal is representative of a magnetic field amplitude; a processing module configured to provide a processed sensor output signal representative of the sensor output signal; a switching level calculation module configured to calculate a switching level, (1) during a power up mode, based on a default switching level, and (2) during a running mode, based on the processed sensor output signal; a comparator module configured to compare the processed sensor output signal with the switching level, and to provide a comparator output signal based on the comparison; and a storage module configured to store the default switching level, provide the default switching level during the power up mode, and update the default switching level during the running mode.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: November 5, 2019
    Assignee: Infineon Technologies AG
    Inventors: Tobias Werth, Catalina-Petruta Juglan
  • Patent number: 10466045
    Abstract: The subject fluid gauges measure actual position of a workpiece relative to a target position. A gauge body that is positionable relative to the workpiece and that includes multiple differential-pressure (DP) sensors has a measurement channel and respective reference channels. Each DP sensor measures, over a respective individual dynamic pressure range, a differential pressure established by a respective fluid flow in the measurement channel relative to a fluid flow in a respective reference channel. The dynamic pressure ranges of the DP sensors substantially overlap each other. A controller is connected to and monitors the DP sensors. The controller is configured to select, for obtaining a differential pressure indicative of the position of the workpiece, a DP sensor sensing the smallest magnitude of DP.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: November 5, 2019
    Assignee: Nikon Corporation
    Inventor: Michael Sogard
  • Patent number: 10467711
    Abstract: According to aspects of the present disclosure, systems, apparatuses, and methods are provide that automate the process of finding captures of reflectance panels, detecting the particular regions of each image that represent the reflectance panel, and retrieving or otherwise obtaining reflectance information for the reflectance panel. One example reflectance panel assembly includes a reflectance panel and a machine-readable symbol.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: November 5, 2019
    Assignee: MICASENSE, INC.
    Inventors: Gabriel Torres, Justin McAllister, Jefferson McBride
  • Patent number: 10466373
    Abstract: A radiation imaging apparatus includes a non-volatile storage unit and a radiation sensor unit which performs imaging on the intensity distribution of radiation irradiation from a radiation source. The non-volatile storage unit includes the first storage area in which the first sensor characteristic information of the radiation sensor unit obtained based on radiation irradiation from the first radiation source is stored, and the second storage area in which the second sensor characteristic information of the radiation sensor unit obtained after the first sensor characteristic information based on radiation irradiation from the second radiation source different from the first radiation source is stored.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: November 5, 2019
    Assignee: Canon Kabushiki Kaisha
    Inventor: Hirokazu Ohguri
  • Patent number: 10459038
    Abstract: A method for estimating a current open-circuit voltage characteristic of a battery, comprising acquiring a portion of an actual open-circuit voltage characteristic of the battery, detecting or defining a significant point in the acquired portion of the actual open-circuit voltage characteristic, identifying a point, in a characteristic curve of an anode potential of the battery and/or in a characteristic curve of a cathode potential of the battery, that is associated with the significant point, shifting and/or scaling the characteristic curve of the anode potential and the characteristic curve of the cathode potential on the basis of the position of the significant point with respect of the associated point, until the acquired portion is simulated by combination of the shifted and/or scaled characteristic curves, and calculating the current open-circuit voltage characteristic on the basis of the shifted and/or scaled characteristic curves.
    Type: Grant
    Filed: July 20, 2016
    Date of Patent: October 29, 2019
    Assignee: Robert Bosch GmbH
    Inventors: Jens Becker, Michael Erden, Olivier Cois, Triantafyllos Zafiridis
  • Patent number: 10459856
    Abstract: A system and method for determining an acquisition buffer size for use in processing signals, the method including determining a number of samples obtained for a predetermined number of line cycles based on digital signals received from an analog-to-digital converter (106), determining an integer number of line cycles needed for a predetermined target number of samples, and determining an acquisition buffer length based on the integer number of line cycles, as a length of time that can accommodate the determined integer number of line cycles while minimizing or avoiding partial line cycles. The method can further include determining whether the determined acquisition buffer length is within a threshold range, and when not within the threshold, continuing to store a previously determined acquisition buffer length instead of the determined acquisition buffer length. The method may be repeated to continually adjust the acquisition buffer length to minimize or avoid partial line cycles.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: October 29, 2019
    Assignee: ITRON, INC.
    Inventors: Pierre DeCaux, Steven A. Grey
  • Patent number: 10451764
    Abstract: Capacitivity and frequency effect index detection device and method, the device comprising a signal generator for generating alternating current signal having at least two frequencies; a current and phase generation module for generating current and phase information corresponding to each frequency; a first and second test electrodes, the first test electrode for sending the signal to a first position in a test area; the second test electrode for providing reference voltage at a second location in the test area; the first test electrode also for generating voltage information corresponding to each frequency, the voltage information as voltage information of the first position relative to the reference voltage of the second position; and a processing unit for determining at least one type of parameter information corresponding to each frequency and determining the capacitivity and frequency effect index of the test area according to any two frequencies and the parameter information.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: October 22, 2019
    Assignee: Chengdu Co-win Geological Exploration Technology Co., Ltd
    Inventors: Yuting Zeng, Youming Deng
  • Patent number: 10451770
    Abstract: The present invention is related to a method for detecting and/or measuring atmospheric accretion on a suspended electrical cable span (2) of overhead power lines, said suspended electrical cable span (2) having a sag (D) and a local tension (H), and being submitted to wind pressure (wwind), comprising the steps of independently: measuring said sag (D), and optionally measuring the wind pressure (wwind), over a first time range, measuring the local tension (H) over a second time range, the results of both steps being complemented and/or combined, so that to allow atmospheric accretion detection and/or measurement.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: October 22, 2019
    Assignee: Ampacimon S.A.
    Inventor: Bertrand Godard
  • Patent number: 10444277
    Abstract: The invention provides for a medical instrument (100, 300, 500) comprising a processor. Execution of machine executable instructions (120, 122, 124, 350, 352, 354) cause the processor to repeatedly: construct (200, 416) a measurement vector (114, 700) comprising multiple data values (704) using a measurement database (116, 122), wherein the multiple data values comprise examination room data (332) descriptive of the environmental conditions of an examination room (322) of a magnetic resonance imaging system, wherein the multiple data values further comprise technical room data (330) descriptive of the environmental conditions of a technical room (326) of the magnetic resonance imaging system; and calculate (202, 418) a probability (706) of failure of a gradient coil amplifier (312) of the magnetic resonance imaging system a predetermined number of days in the future by inputting the measurement vector into a trained neural network program (124).
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: October 15, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Arjan Teodor Van Wieringen
  • Patent number: 10444206
    Abstract: Peaks are detected on a mass chromatogram at multiple m/z ratios characterizing a target component, and the detected peaks are classified into groups according to their occurrence time. The measured mass spectrum is acquired for each group, the measured mass spectrum and standard mass spectrum of the target component are matched for each m/z, and the standard mass spectrum is normalized by multiplying it by the same scale factor for all the m/z ratios such that it does not exceed the peak intensities on the measured mass spectrum. The quantitation ion m/z peak intensity on the normalized standard mass spectrum is then examined, and if this intensity exceeds a preset threshold and the confirmation ion ratio determined based on the measured mass spectrum obtained for the target component is outside a reference range, then that target component is taken as a narrowed result candidate.
    Type: Grant
    Filed: May 4, 2017
    Date of Patent: October 15, 2019
    Assignee: SHIMADZU CORPORATION
    Inventor: Katsuyuki Taneda
  • Patent number: 10441086
    Abstract: In one example, this disclosure describes a method including receiving, at a central controller of an air mattress system, a plurality of air pressure value, determining a plurality of average values using the plurality of the received air pressure values, calculating a difference value between a first one of the plurality of average values and a second one of the plurality of average values, comparing the difference value to a threshold value, determining, based on the comparison, whether a user of the air mattress system moved.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: October 15, 2019
    Assignees: Sleep Number Corporation, Select Comfort Retail Corporation
    Inventors: Rob Nunn, Wade Daniel Palashewski, Matthew Wayne Tilstra, Steven Jay Young, Carl Hewitt, Yuri Zhovnirovsky