Patents Examined by Hanway Chang
  • Patent number: 10667377
    Abstract: A target material is provided at a target location, the target material including a material that emits extreme ultraviolet light when converted to plasma, and the target material extending in a first extent along a first direction and in a second extent along a second direction; an amplified light beam is directed along a direction of propagation toward the target location; and the amplified light beam is focused in a focal plane, where the target location is outside of the focal plane and an interaction between the amplified light beam and the target material converts at least part of the target material to plasma that emits EUV light.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: May 26, 2020
    Assignee: ASML Netherlands B.V.
    Inventors: Robert Jay Rafac, Richard L. Sandstrom, Daniel John William Brown, Kai-Chung Hou
  • Patent number: 10665417
    Abstract: Systems and methods are disclosed that remove noise from roughness measurements to determine roughness of a feature in a pattern structure. In one embodiment, a method for determining roughness of a feature in a pattern structure includes generating, using an imaging device, a set of one or more images, each including measured linescan information that includes noise. The method also includes detecting edges of the features within the pattern structure of each image without filtering the images, generating a biased power spectral density (PSD) dataset representing feature geometry information corresponding to the edge detection measurements, evaluating a high-frequency portion of the biased PSD dataset to determine a noise model for predicting noise over all frequencies of the biased PSD dataset, and subtracting the noise predicted by the determined noise model from a biased roughness measure to obtain an unbiased roughness measure.
    Type: Grant
    Filed: February 20, 2019
    Date of Patent: May 26, 2020
    Assignee: FRACTILIA, LLC
    Inventor: Chris Mack
  • Patent number: 10665418
    Abstract: Systems and methods are disclosed that remove noise from roughness measurements to determine roughness of a feature in a pattern structure. In one embodiment, a method for determining roughness of a feature in a pattern structure includes generating, using an imaging device, a set of one or more images, each including measured linescan information that includes noise. The method also includes detecting edges of the features within the pattern structure of each image without filtering the images, generating a biased power spectral density (PSD) dataset representing feature geometry information corresponding to the edge detection measurements, evaluating a high-frequency portion of the biased PSD dataset to determine a noise model for predicting noise over all frequencies of the biased PSD dataset, and subtracting the noise predicted by the determined noise model from a biased roughness measure to obtain an unbiased roughness measure.
    Type: Grant
    Filed: February 20, 2019
    Date of Patent: May 26, 2020
    Assignee: FRACTILIA, LLC
    Inventor: Chris Mack
  • Patent number: 10665422
    Abstract: An electron beam image acquisition apparatus includes a deflector to deflect an electron beam, a deflection control system to control the deflector, a measurement circuitry to measure, while moving a stage for placing thereon a substrate on which a figure pattern is formed, an edge position of a mark pattern arranged on the stage by scanning the mark pattern with an electron beam, a delay time calculation circuitry to calculate, using information on the edge position, a deflection control delay time which is a delay time to start deflection control occurring in the deflection control system, a correction circuitry to correct, using the deflection control delay time, a deflection position of the electron beam, and an image acquisition mechanism to include the deflector and acquire an image of the figure pattern at a corrected deflection position on the substrate.
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: May 26, 2020
    Assignee: NUFLARE TECHNOLOGY, INC.
    Inventor: Hidekazu Takekoshi
  • Patent number: 10664955
    Abstract: Systems and methods are disclosed that remove noise from roughness measurements to determine roughness of a feature in a pattern structure. In one embodiment, a method includes generating, using an imaging device, a set of one or more images, each including an instance of a feature within a respective pattern structure. The method also includes detecting edges of the features within the pattern structure of each image using an inverse linescan model, generating a biased power spectral density (PSD) dataset representing feature geometry information corresponding to the edge detection measurements, evaluating a high-frequency portion of the biased PSD dataset to determine a noise model for predicting noise over all frequencies of the biased PSD dataset, and subtracting the noise predicted by the determined noise model from a biased roughness measure to obtain an unbiased roughness measure provided as part of a training data set to a machine learning model.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: May 26, 2020
    Assignee: FRACTILIA, LLC
    Inventor: Chris Mack
  • Patent number: 10665447
    Abstract: Transition radiation from nanotubes, nanosheets, and nanoparticles and in particular, boron nitride nanomaterials, can be utilized for the generation of light. Wavelengths of light of interest for microchip lithography, including 13.5 nm (91.8 eV) and 6.7 nm (185 eV), can be generated at useful intensities, by transition radiation light sources. Light useful for monitoring relativistic charged particle beam characteristics such as spatial distribution and intensity can be generated.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: May 26, 2020
    Assignees: BNNT, LLC, Jefferson Science Associates, LLC
    Inventors: Kevin C. Jordan, Thomas G. Dushatinski, Michael W. Smith, Jonathan C. Stevens, R. Roy Whitney
  • Patent number: 10662079
    Abstract: A water purification device utilizing ultraviolet lights and a nebulizer is provided. The device includes a tube that receives bacteria laden water at an intake end. The tube includes one or more baffles for causing turbulent flow of the water, and one or more ultrasonic nebulizers for converting the water stream into a mist. The device further includes one or more sources of germicidal ultraviolet light which may be located either inside or outside of the tube.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: May 26, 2020
    Inventor: Robert Wachtl
  • Patent number: 10658147
    Abstract: A charged particle beam apparatus which automatically prepares a sample piece from a sample, includes: a charged particle beam irradiation optical system configured to perform irradiation of a charged particle beam; a sample stage configured to move, the sample being placed on the sample stage; a sample piece relocation unit configured to hold and transport the sample piece which is separated and picked up from the sample; a holder fixing stage which holds a sample piece holder to which the sample piece is relocated; and a computer which performs positional control in relation to a target object based on a template and positional information which is obtained from an image of the target object, the template being generated based on an absorption current image of the target object which is acquired using the irradiation of the charged particle beam.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: May 19, 2020
    Assignee: HITACHI HIGH-TECH SCIENCE CORPORATION
    Inventors: Makoto Sato, Satoshi Tomimatsu, Atsushi Uemoto, Tatsuya Asahata
  • Patent number: 10656532
    Abstract: Systems and methods are disclosed that remove noise from roughness measurements to determine roughness of a feature in a pattern structure. In one embodiment, a method for determining roughness of a feature in a pattern structure includes generating, using an imaging device, a set of one or more images, each including measured linescan information that includes noise. The method also includes detecting edges of the features within the pattern structure of each image without filtering the images, generating a biased power spectral density (PSD) dataset representing feature geometry information corresponding to the edge detection measurements, evaluating a high-frequency portion of the biased PSD dataset to determine a noise model for predicting noise over all frequencies of the biased PSD dataset, and subtracting the noise predicted by the determined noise model from a biased roughness measure to obtain an unbiased roughness measure.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: May 19, 2020
    Assignee: FRACTILIA, LLC
    Inventor: Chris Mack
  • Patent number: 10658158
    Abstract: In one embodiment, an aperture set for multi-beam includes a shaping aperture array in which a plurality of first openings are formed, and which forms a multi-beam by allowing part of a charged particle beam to pass through corresponding ones of the plurality of first openings, a blanking aperture array in which a plurality of second openings are formed, the plurality of second openings each including a pair of blanking electrodes that perform blanking deflection of a beam, and an electric field shield plate that is disposed to be opposed to the blanking aperture array and includes a plurality of third openings. The electric field shield plate has a substrate, and a high resistance film provided on a surface of the substrate, the surface being opposed to the blanking aperture array, and the high resistance film has a higher electrical resistance value than an electrical resistance value of the substrate.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: May 19, 2020
    Assignee: NuFlare Technology, Inc.
    Inventor: Hiroshi Matsumoto
  • Patent number: 10648801
    Abstract: Systems and methods are disclosed that remove noise from roughness measurements to determine roughness of a feature in a pattern structure. In one embodiment, a method for determining roughness of a feature in a pattern structure includes generating, using an imaging device, a set of one or more images, each including measured linescan information that includes noise. The method also includes detecting edges of the features within the pattern structure of each image without filtering the images, generating a biased power spectral density (PSD) dataset representing feature geometry information corresponding to the edge detection measurements, evaluating a high-frequency portion of the biased PSD dataset to determine a noise model for predicting noise over all frequencies of the biased PSD dataset, and subtracting the noise predicted by the determined noise model from a biased roughness measure to obtain an unbiased roughness measure.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: May 12, 2020
    Assignee: FRACTILIA, LLC
    Inventor: Chris Mack
  • Patent number: 10639387
    Abstract: A disinfecting system includes a housing. An ultraviolet light (UV) source is secured to the housing and configured to emit UV light for disinfection of a target. A processor is secured to the housing in communication with the UV light source. The processor is configured to activate the UV light source for a selected amount of time suitable for disinfection of the target.
    Type: Grant
    Filed: July 2, 2018
    Date of Patent: May 5, 2020
    Assignee: P Tech, LLC
    Inventors: Peter M. Bonutti, Justin Beyers, Tonya M. Bierman
  • Patent number: 10638588
    Abstract: High-brightness LPP source and method for generating short-wavelength radiation which include a vacuum chamber (1) with an input window (6) for a laser beam (7) focused into the interaction zone (5), an output window (8) for the exit of the short-wavelength radiation beam (9); the rotating target assembly (3), having an annular groove (11); the target (4) as a layer of a molten metal formed by centrifugal force on the surface of the distal wall (13) of the annular groove (11) while the proximal wall (14) of the annular groove is designed to provide a line of sight between the interaction zone and both the input and output windows particularly during laser pulses. A method for mitigating debris particles comprises using an target orbital velocity high enough for the droplet fractions of the debris particles exiting the rotating target assembly not to be directed towards the input and output windows.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: April 28, 2020
    Assignees: Isteq B.V., RnD-ISAN, Ltd
    Inventors: Aleksandr Yurievich Vinokhodov, Vladimir Vitalievich Ivanov, Konstantin Nikolaevich Koshelev, Mikhail Sergeyevich Krivokorytov, Vladimir Mikhailovich Krivtsun, Aleksandr Andreevich Lash, Vyacheslav Valerievich Medvedev, Yury Viktorovich Sidelnikov, Oleg Feliksovich Yakushev
  • Patent number: 10636619
    Abstract: Disclosed is a charged particle beam apparatus including a stage supporting a sample holder; a stage driving mechanism; a sample chamber; a focused ion beam column; an electron beam column; a detector detecting secondary ions or secondary electrons generated from the sample; a reading unit reading identification information attached to the sample holder; a memory unit storing holder shape information indicating a correspondence relationship between the identification information and a shape of the sample holder, and design information that is shape information of an internal structure of the sample chamber; and a stage driving range limiting unit limiting a driving range of the stage supporting the sample holder on the basis of the shape of the sample holder that is acquired from the identification information read by the reading unit and the holder shape information, and on the basis of a shape of the internal structure.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: April 28, 2020
    Assignee: HITACHI HIGH-TECH SCIENCE CORPORATION
    Inventor: Hiroyuki Suzuki
  • Patent number: 10634698
    Abstract: A high-precision scanning device (1) comprises a first linear scanner (11) for providing scanning movements along a first linear scanning axis (21). The first linear scanner comprises a first base frame (31), a first scanning frame (41), two mutually parallel first piezoelectric bending plates (51A, 51B), and two first hinge joints (61A, 61B) having two first hinge axes (71A, 71B), respectively. Under influence of synchronic piezoelectric operation of the two first piezoelectric bending plates, the first scanning frame is being synchronically moved relative to the first base frame along said first linear scanning axis. The scanning device is compact, especially nearby the working areas where the precise scanning movements have to be performed, so that the device can be operable in very tiny working areas.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: April 28, 2020
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventors: Albert Dekker, Anton Adriaan Bijnagte
  • Patent number: 10636618
    Abstract: There is provided a charged particle beam apparatus including: a charged particle source; a condenser lens and an object lens for converging a charged particle beam from the charged particle source and irradiating the converged charged particle beam to a specimen; and plural image shift deflectors for deflecting the charged particle beam. In the charged particle beam apparatus, the deflection of the charged particle beam is controlled using first control parameters that set the optical axis of a charged particle beam to a first optical axis that passes through the center of the object lens and enters a predefined position of the specimen, and second control parameters that transform the first control parameters so that the first control parameters set the optical axis of the charged particle beam to a second optical axis having a predefined incident angle different from the incident angle of the first optical axis.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: April 28, 2020
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Kaori Bizen, Yasunari Sohda, Makoto Sakakibara, Hiroya Ohta, Kenji Tanimoto, Yusuke Abe
  • Patent number: 10629424
    Abstract: A low temperature plasma probe, a mass spectrometry system, and a method for using a low temperature plasma probe are described. In an embodiment, a low temperature plasma probe includes an intake capillary that provides an ion flow from a sample surface to a mass spectrometer; at least one low temperature plasma tube that provides low temperature plasma gas; at least one heated gas tube that provides heated gas to the sample surface, where the heated gas enhances desorption and ionization of a sample on the sample surface.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: April 21, 2020
    Assignee: SMITHS DETECTION INC.
    Inventors: Vadym Berkout, Thomas D. Saul
  • Patent number: 10622187
    Abstract: Disclosed are a charged particle beam apparatus wherein the charged particle beam apparatus can efficiently performs finish processing of a sample and acquisition of a high-precision SEM image of a processing surface of the sample in a short time, and a sample processing observation method using the same. The charged particle beam apparatus includes: a gallium ion beam column radiating a gallium ion beam toward a sample to form a cross-section of the sample; an electron beam column having a semi-in-lens type objective lens and radiating an electron beam toward the sample; a gas ion beam column radiating a gas ion beam toward the sample to perform finish processing of the cross-section of the sample, wherein the gas ion beam has a beam diameter larger than a maximum diameter of the cross-section of the sample.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: April 14, 2020
    Assignee: HITACHI HIGH-TECH SCIENCE CORPORATION
    Inventors: Yo Yamamoto, Shota Torikawa, Hidekazu Suzuki, Hiroyuki Suzuki, Mamoru Okabe, Tatsuya Asahata
  • Patent number: 10615024
    Abstract: An electrostatic analyzer (ESA) includes a coaxial structure having an outer conductive cylinder, an inner conductive cylinder, and one or more pathways disposed therebetween and extending from a first end to a second end of the coaxial structure. The outer conductive cylinder and the inner conductive cylinder may each be structurally configured to receive a bias voltage for creation of a predetermined electric field therebetween that allows for passage of charged particles with a predetermined energy/charge band along a helical path through the coaxial structure. The ESA may further include an entrance filter on the first end of the coaxial structure that defines a plurality of openings aligned at a predetermined angle thereby limiting one or more fields of view between a pathway through the ESA and the external environment to filter particles, by their trajectory, from entering the pathway for analysis by the ESA.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: April 7, 2020
    Assignee: THE GOVERNMENT OF THE UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF THE AIR FORCE
    Inventors: Patrick Roddy, David Barton, Joseph Coombs, John Ballenthin, John McGarity, Scott Kratochvil
  • Patent number: 10603510
    Abstract: A process for treating highly localized carcinoma cells that provides precise positioning of a therapeutic source of highly ionizing but weakly penetrating radiation, which can be shaped so that it irradiates essentially only the volume of the tumor. The intensity and duration of the radiation produced by the source can be activated and deactivated by controlling the neutron flux generated by an array of electrically controlled neutron generators positioned outside the body being treated. The energy of the neutrons that interact with the source element can be adjusted to optimize the reaction rate of the ionized radiation production by utilizing neutron moderating material between the neutron generator array and the body. The source device may be left in place and reactivated as needed to ensure the tumor is eradicated without exposing the patient to any additional radiation between treatments. The source device may be removed once treatment is completed.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: March 31, 2020
    Assignee: Westinghouse Electric Company LLC
    Inventors: John H. Nelson, Michael D. Heibel